Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310427860> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4310427860 abstract "Specific emitter identification (SEI) plays an increasingly crucial and potential role in both military and civilian scenarios. It refers to a process to discriminate individual emitters from each other by analyzing extracted characteristics from given radio signals. Deep learning (DL) and deep neural networks (DNNs) can learn the hidden features of data and build the classifier automatically for decision making, which have been widely used in the SEI research. Considering the insufficiently labeled training samples and large unlabeled training samples, semi-supervised learning-based SEI (SS-SEI) methods have been proposed. However, there are few SS-SEI methods focusing on extracting the discriminative and generalized semantic features of radio signals. In this paper, we propose an SS-SEI method using metric-adversarial training (MAT). Specifically, pseudo labels are innovatively introduced into metric learning to enable semi-supervised metric learning (SSML), and an objective function alternatively regularized by SSML and virtual adversarial training (VAT) is designed to extract discriminative and generalized semantic features of radio signals. The proposed MAT-based SS-SEI method is evaluated on an open-source large-scale real-world automatic-dependent surveillance-broadcast (ADS-B) dataset and WiFi dataset and is compared with state-of-the-art methods. The simulation results show that the proposed method achieves better identification performance than existing state-of-the-art methods. Specifically, when the ratio of the number of labeled training samples to the number of all training samples is 10%, the identification accuracy is 84.80% under the ADS-B dataset and 80.70% under the WiFi dataset. Our code can be downloaded from https://github.com/lovelymimola/MAT-based-SS-SEI." @default.
- W4310427860 created "2022-12-10" @default.
- W4310427860 creator A5007247379 @default.
- W4310427860 creator A5011281064 @default.
- W4310427860 creator A5022190223 @default.
- W4310427860 creator A5026448728 @default.
- W4310427860 creator A5027367677 @default.
- W4310427860 creator A5040136142 @default.
- W4310427860 creator A5081492088 @default.
- W4310427860 date "2022-11-28" @default.
- W4310427860 modified "2023-10-16" @default.
- W4310427860 title "Semi-Supervised Specific Emitter Identification Method Using Metric-Adversarial Training" @default.
- W4310427860 doi "https://doi.org/10.48550/arxiv.2211.15379" @default.
- W4310427860 hasPublicationYear "2022" @default.
- W4310427860 type Work @default.
- W4310427860 citedByCount "0" @default.
- W4310427860 crossrefType "posted-content" @default.
- W4310427860 hasAuthorship W4310427860A5007247379 @default.
- W4310427860 hasAuthorship W4310427860A5011281064 @default.
- W4310427860 hasAuthorship W4310427860A5022190223 @default.
- W4310427860 hasAuthorship W4310427860A5026448728 @default.
- W4310427860 hasAuthorship W4310427860A5027367677 @default.
- W4310427860 hasAuthorship W4310427860A5040136142 @default.
- W4310427860 hasAuthorship W4310427860A5081492088 @default.
- W4310427860 hasBestOaLocation W43104278601 @default.
- W4310427860 hasConcept C108583219 @default.
- W4310427860 hasConcept C116834253 @default.
- W4310427860 hasConcept C119857082 @default.
- W4310427860 hasConcept C127413603 @default.
- W4310427860 hasConcept C153180895 @default.
- W4310427860 hasConcept C154945302 @default.
- W4310427860 hasConcept C176217482 @default.
- W4310427860 hasConcept C21547014 @default.
- W4310427860 hasConcept C41008148 @default.
- W4310427860 hasConcept C50644808 @default.
- W4310427860 hasConcept C59822182 @default.
- W4310427860 hasConcept C86803240 @default.
- W4310427860 hasConcept C95623464 @default.
- W4310427860 hasConcept C97931131 @default.
- W4310427860 hasConceptScore W4310427860C108583219 @default.
- W4310427860 hasConceptScore W4310427860C116834253 @default.
- W4310427860 hasConceptScore W4310427860C119857082 @default.
- W4310427860 hasConceptScore W4310427860C127413603 @default.
- W4310427860 hasConceptScore W4310427860C153180895 @default.
- W4310427860 hasConceptScore W4310427860C154945302 @default.
- W4310427860 hasConceptScore W4310427860C176217482 @default.
- W4310427860 hasConceptScore W4310427860C21547014 @default.
- W4310427860 hasConceptScore W4310427860C41008148 @default.
- W4310427860 hasConceptScore W4310427860C50644808 @default.
- W4310427860 hasConceptScore W4310427860C59822182 @default.
- W4310427860 hasConceptScore W4310427860C86803240 @default.
- W4310427860 hasConceptScore W4310427860C95623464 @default.
- W4310427860 hasConceptScore W4310427860C97931131 @default.
- W4310427860 hasLocation W43104278601 @default.
- W4310427860 hasLocation W43104278602 @default.
- W4310427860 hasOpenAccess W4310427860 @default.
- W4310427860 hasPrimaryLocation W43104278601 @default.
- W4310427860 hasRelatedWork W1972656095 @default.
- W4310427860 hasRelatedWork W2024160000 @default.
- W4310427860 hasRelatedWork W2061273563 @default.
- W4310427860 hasRelatedWork W2285052147 @default.
- W4310427860 hasRelatedWork W2729514902 @default.
- W4310427860 hasRelatedWork W2743258233 @default.
- W4310427860 hasRelatedWork W2773500201 @default.
- W4310427860 hasRelatedWork W2998168123 @default.
- W4310427860 hasRelatedWork W4287995534 @default.
- W4310427860 hasRelatedWork W4380075502 @default.
- W4310427860 isParatext "false" @default.
- W4310427860 isRetracted "false" @default.
- W4310427860 workType "article" @default.