Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310429524> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W4310429524 abstract "It has recently been demonstrated that deep learning has significant potential to automate parts of the exoplanet detection pipeline using light curve data from satellites such as Kepler cite{borucki2010kepler} cite{koch2010kepler} and NASA's Transiting Exoplanet Survey Satellite (TESS) cite{ricker2010transiting}. Unfortunately, the smallness of the available datasets makes it difficult to realize the level of performance one expects from powerful network architectures. In this paper, we investigate the use of data augmentation techniques on light curve data from to train neural networks to identify exoplanets. The augmentation techniques used are of two classes: Simple (e.g. additive noise augmentation) and learning-based (e.g. first training a GAN cite{goodfellow2020generative} to generate new examples). We demonstrate that data augmentation has a potential to improve model performance for the exoplanet detection problem, and recommend the use of augmentation based on generative models as more data becomes available." @default.
- W4310429524 created "2022-12-10" @default.
- W4310429524 creator A5015472377 @default.
- W4310429524 date "2022-11-28" @default.
- W4310429524 modified "2023-10-16" @default.
- W4310429524 title "Exoplanet Detection by Machine Learning with Data Augmentation" @default.
- W4310429524 doi "https://doi.org/10.48550/arxiv.2211.15577" @default.
- W4310429524 hasPublicationYear "2022" @default.
- W4310429524 type Work @default.
- W4310429524 citedByCount "0" @default.
- W4310429524 crossrefType "posted-content" @default.
- W4310429524 hasAuthorship W4310429524A5015472377 @default.
- W4310429524 hasBestOaLocation W43104295241 @default.
- W4310429524 hasConcept C111919701 @default.
- W4310429524 hasConcept C119857082 @default.
- W4310429524 hasConcept C121332964 @default.
- W4310429524 hasConcept C1276947 @default.
- W4310429524 hasConcept C150846664 @default.
- W4310429524 hasConcept C154945302 @default.
- W4310429524 hasConcept C163479331 @default.
- W4310429524 hasConcept C19269812 @default.
- W4310429524 hasConcept C207963374 @default.
- W4310429524 hasConcept C31972630 @default.
- W4310429524 hasConcept C41008148 @default.
- W4310429524 hasConcept C43521106 @default.
- W4310429524 hasConcept C50644808 @default.
- W4310429524 hasConceptScore W4310429524C111919701 @default.
- W4310429524 hasConceptScore W4310429524C119857082 @default.
- W4310429524 hasConceptScore W4310429524C121332964 @default.
- W4310429524 hasConceptScore W4310429524C1276947 @default.
- W4310429524 hasConceptScore W4310429524C150846664 @default.
- W4310429524 hasConceptScore W4310429524C154945302 @default.
- W4310429524 hasConceptScore W4310429524C163479331 @default.
- W4310429524 hasConceptScore W4310429524C19269812 @default.
- W4310429524 hasConceptScore W4310429524C207963374 @default.
- W4310429524 hasConceptScore W4310429524C31972630 @default.
- W4310429524 hasConceptScore W4310429524C41008148 @default.
- W4310429524 hasConceptScore W4310429524C43521106 @default.
- W4310429524 hasConceptScore W4310429524C50644808 @default.
- W4310429524 hasLocation W43104295241 @default.
- W4310429524 hasLocation W43104295242 @default.
- W4310429524 hasOpenAccess W4310429524 @default.
- W4310429524 hasPrimaryLocation W43104295241 @default.
- W4310429524 hasRelatedWork W1962715426 @default.
- W4310429524 hasRelatedWork W2597630193 @default.
- W4310429524 hasRelatedWork W2627022779 @default.
- W4310429524 hasRelatedWork W2775423721 @default.
- W4310429524 hasRelatedWork W2783796941 @default.
- W4310429524 hasRelatedWork W2792167995 @default.
- W4310429524 hasRelatedWork W3121130632 @default.
- W4310429524 hasRelatedWork W4200477015 @default.
- W4310429524 hasRelatedWork W4242333362 @default.
- W4310429524 hasRelatedWork W4298798068 @default.
- W4310429524 isParatext "false" @default.
- W4310429524 isRetracted "false" @default.
- W4310429524 workType "article" @default.