Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310430069> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4310430069 abstract "International initiatives such as METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) have collected several multigenomic and clinical data sets to identify the undergoing molecular processes taking place throughout the evolution of various cancers. Numerous Machine Learning and statistical models have been designed and trained to analyze these types of data independently, however, the integration of such differently shaped and sourced information streams has not been extensively studied. To better integrate these data sets and generate meaningful representations that can ultimately be leveraged for cancer detection tasks could lead to giving well-suited treatments to patients. Hence, we propose a novel learning pipeline comprising three steps - the integration of cancer data modalities as graphs, followed by the application of Graph Neural Networks in an unsupervised setting to generate lower-dimensional embeddings from the combined data, and finally feeding the new representations on a cancer sub-type classification model for evaluation. The graph construction algorithms are described in-depth as METABRIC does not store relationships between the patient modalities, with a discussion of their influence over the quality of the generated embeddings. We also present the models used to generate the lower-latent space representations: Graph Neural Networks, Variational Graph Autoencoders and Deep Graph Infomax. In parallel, the pipeline is tested on a synthetic dataset to demonstrate that the characteristics of the underlying data, such as homophily levels, greatly influence the performance of the pipeline, which ranges between 51% to 98% accuracy on artificial data, and 13% and 80% on METABRIC. This project has the potential to improve cancer data understanding and encourages the transition of regular data sets to graph-shaped data." @default.
- W4310430069 created "2022-12-10" @default.
- W4310430069 creator A5011138871 @default.
- W4310430069 date "2022-11-28" @default.
- W4310430069 modified "2023-09-27" @default.
- W4310430069 title "Graph Neural Networks for Breast Cancer Data Integration" @default.
- W4310430069 doi "https://doi.org/10.48550/arxiv.2211.15561" @default.
- W4310430069 hasPublicationYear "2022" @default.
- W4310430069 type Work @default.
- W4310430069 citedByCount "0" @default.
- W4310430069 crossrefType "posted-content" @default.
- W4310430069 hasAuthorship W4310430069A5011138871 @default.
- W4310430069 hasBestOaLocation W43104300691 @default.
- W4310430069 hasConcept C119857082 @default.
- W4310430069 hasConcept C120317606 @default.
- W4310430069 hasConcept C124101348 @default.
- W4310430069 hasConcept C127162648 @default.
- W4310430069 hasConcept C132525143 @default.
- W4310430069 hasConcept C144024400 @default.
- W4310430069 hasConcept C153402090 @default.
- W4310430069 hasConcept C154945302 @default.
- W4310430069 hasConcept C199360897 @default.
- W4310430069 hasConcept C2779903281 @default.
- W4310430069 hasConcept C31258907 @default.
- W4310430069 hasConcept C36289849 @default.
- W4310430069 hasConcept C41008148 @default.
- W4310430069 hasConcept C43521106 @default.
- W4310430069 hasConcept C50644808 @default.
- W4310430069 hasConcept C72634772 @default.
- W4310430069 hasConcept C80444323 @default.
- W4310430069 hasConceptScore W4310430069C119857082 @default.
- W4310430069 hasConceptScore W4310430069C120317606 @default.
- W4310430069 hasConceptScore W4310430069C124101348 @default.
- W4310430069 hasConceptScore W4310430069C127162648 @default.
- W4310430069 hasConceptScore W4310430069C132525143 @default.
- W4310430069 hasConceptScore W4310430069C144024400 @default.
- W4310430069 hasConceptScore W4310430069C153402090 @default.
- W4310430069 hasConceptScore W4310430069C154945302 @default.
- W4310430069 hasConceptScore W4310430069C199360897 @default.
- W4310430069 hasConceptScore W4310430069C2779903281 @default.
- W4310430069 hasConceptScore W4310430069C31258907 @default.
- W4310430069 hasConceptScore W4310430069C36289849 @default.
- W4310430069 hasConceptScore W4310430069C41008148 @default.
- W4310430069 hasConceptScore W4310430069C43521106 @default.
- W4310430069 hasConceptScore W4310430069C50644808 @default.
- W4310430069 hasConceptScore W4310430069C72634772 @default.
- W4310430069 hasConceptScore W4310430069C80444323 @default.
- W4310430069 hasLocation W43104300691 @default.
- W4310430069 hasLocation W43104300692 @default.
- W4310430069 hasOpenAccess W4310430069 @default.
- W4310430069 hasPrimaryLocation W43104300691 @default.
- W4310430069 hasRelatedWork W2961085424 @default.
- W4310430069 hasRelatedWork W2992516105 @default.
- W4310430069 hasRelatedWork W3046775127 @default.
- W4310430069 hasRelatedWork W3170094116 @default.
- W4310430069 hasRelatedWork W4285260836 @default.
- W4310430069 hasRelatedWork W4286629047 @default.
- W4310430069 hasRelatedWork W4306321456 @default.
- W4310430069 hasRelatedWork W4306674287 @default.
- W4310430069 hasRelatedWork W4362698799 @default.
- W4310430069 hasRelatedWork W4224009465 @default.
- W4310430069 isParatext "false" @default.
- W4310430069 isRetracted "false" @default.
- W4310430069 workType "article" @default.