Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310443846> ?p ?o ?g. }
- W4310443846 endingPage "18202" @default.
- W4310443846 startingPage "18187" @default.
- W4310443846 abstract "This work explores the design of distributed model predictive control (DMPC) systems using Gaussian process (GP) models to predict the nonlinear dynamic behavior for nonlinear processes with unknown dynamics. Specifically, the DMPC is designed and analyzed concerning closed-loop stability and performance properties based on the Lyapunov techniques. First, the GP model used in the DMPC is developed and updated in a distributed manner where each subsystem only considers its physically interacted states except its own states to get a sufficiently accurate model with a relatively smaller data set and achieve efficient real-time computation time. Then, a Lyapunov constraint, which is related to the model mismatch quantified by the GP model, is developed to guarantee the stability of the proposed DMPC system at a given confidence level. Meanwhile, a mechanism for triggering the update of the GP’s data set and the Lyapunov constraint is proposed that keeps the recursive feasibility of the DMPC system and the improvement of the steady-state performance. Finally, using an ethylbenzene production process as an example, the simulation results demonstrate the effectiveness of the proposed DMPC system." @default.
- W4310443846 created "2022-12-10" @default.
- W4310443846 creator A5008092960 @default.
- W4310443846 creator A5023604125 @default.
- W4310443846 creator A5025592812 @default.
- W4310443846 creator A5036144927 @default.
- W4310443846 creator A5044623652 @default.
- W4310443846 creator A5057871628 @default.
- W4310443846 date "2022-11-30" @default.
- W4310443846 modified "2023-10-12" @default.
- W4310443846 title "Data-Driven Distributed Model Predictive Control of Continuous Nonlinear Systems with Gaussian Process" @default.
- W4310443846 cites W1971544324 @default.
- W4310443846 cites W1975373537 @default.
- W4310443846 cites W1981799081 @default.
- W4310443846 cites W2008336133 @default.
- W4310443846 cites W2033538282 @default.
- W4310443846 cites W2041508465 @default.
- W4310443846 cites W2041946112 @default.
- W4310443846 cites W2066425650 @default.
- W4310443846 cites W2070164662 @default.
- W4310443846 cites W2087736926 @default.
- W4310443846 cites W2105094087 @default.
- W4310443846 cites W2134673975 @default.
- W4310443846 cites W2146487916 @default.
- W4310443846 cites W2149316177 @default.
- W4310443846 cites W2151136609 @default.
- W4310443846 cites W2162566926 @default.
- W4310443846 cites W2162977544 @default.
- W4310443846 cites W2418467170 @default.
- W4310443846 cites W2480512873 @default.
- W4310443846 cites W2783187484 @default.
- W4310443846 cites W2802214905 @default.
- W4310443846 cites W2953402039 @default.
- W4310443846 cites W2963436565 @default.
- W4310443846 cites W2963602521 @default.
- W4310443846 cites W2981325366 @default.
- W4310443846 cites W3025528584 @default.
- W4310443846 cites W3037156310 @default.
- W4310443846 cites W3048643786 @default.
- W4310443846 cites W3085930940 @default.
- W4310443846 cites W3104125295 @default.
- W4310443846 cites W3119715644 @default.
- W4310443846 cites W3135239975 @default.
- W4310443846 cites W3193071044 @default.
- W4310443846 cites W3201860029 @default.
- W4310443846 cites W4206212643 @default.
- W4310443846 cites W4213163625 @default.
- W4310443846 cites W4223522663 @default.
- W4310443846 cites W4283217194 @default.
- W4310443846 cites W4283747661 @default.
- W4310443846 cites W4292764325 @default.
- W4310443846 cites W4293792884 @default.
- W4310443846 cites W4296617365 @default.
- W4310443846 doi "https://doi.org/10.1021/acs.iecr.2c03027" @default.
- W4310443846 hasPublicationYear "2022" @default.
- W4310443846 type Work @default.
- W4310443846 citedByCount "2" @default.
- W4310443846 countsByYear W43104438462023 @default.
- W4310443846 crossrefType "journal-article" @default.
- W4310443846 hasAuthorship W4310443846A5008092960 @default.
- W4310443846 hasAuthorship W4310443846A5023604125 @default.
- W4310443846 hasAuthorship W4310443846A5025592812 @default.
- W4310443846 hasAuthorship W4310443846A5036144927 @default.
- W4310443846 hasAuthorship W4310443846A5044623652 @default.
- W4310443846 hasAuthorship W4310443846A5057871628 @default.
- W4310443846 hasConcept C111919701 @default.
- W4310443846 hasConcept C112972136 @default.
- W4310443846 hasConcept C11413529 @default.
- W4310443846 hasConcept C119857082 @default.
- W4310443846 hasConcept C121332964 @default.
- W4310443846 hasConcept C126255220 @default.
- W4310443846 hasConcept C154945302 @default.
- W4310443846 hasConcept C158622935 @default.
- W4310443846 hasConcept C163716315 @default.
- W4310443846 hasConcept C172205157 @default.
- W4310443846 hasConcept C177264268 @default.
- W4310443846 hasConcept C199360897 @default.
- W4310443846 hasConcept C2524010 @default.
- W4310443846 hasConcept C2775924081 @default.
- W4310443846 hasConcept C2776036281 @default.
- W4310443846 hasConcept C33923547 @default.
- W4310443846 hasConcept C41008148 @default.
- W4310443846 hasConcept C45374587 @default.
- W4310443846 hasConcept C47446073 @default.
- W4310443846 hasConcept C60640748 @default.
- W4310443846 hasConcept C61326573 @default.
- W4310443846 hasConcept C62520636 @default.
- W4310443846 hasConcept C98045186 @default.
- W4310443846 hasConceptScore W4310443846C111919701 @default.
- W4310443846 hasConceptScore W4310443846C112972136 @default.
- W4310443846 hasConceptScore W4310443846C11413529 @default.
- W4310443846 hasConceptScore W4310443846C119857082 @default.
- W4310443846 hasConceptScore W4310443846C121332964 @default.
- W4310443846 hasConceptScore W4310443846C126255220 @default.
- W4310443846 hasConceptScore W4310443846C154945302 @default.
- W4310443846 hasConceptScore W4310443846C158622935 @default.
- W4310443846 hasConceptScore W4310443846C163716315 @default.
- W4310443846 hasConceptScore W4310443846C172205157 @default.