Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310467863> ?p ?o ?g. }
- W4310467863 endingPage "347" @default.
- W4310467863 startingPage "340" @default.
- W4310467863 abstract "In this research, we aimed to assess the possibility of using surrogate modeling methods to replace time-consuming calculations related to modeling of COVID-19 dynamics. The Gaussian process regression (GPR) was used as a surrogate to replace detailed simulations by a COVID-19 multiagent model. Experiments were conducted with various kernels, as a result, in accordance with the quality metrics of the models, kernels were identified in which the surrogate gives the most accurate result (Rational Quadratic kernel and Additive kernel). It was demonstrated that by smoothing the dynamics of COVID-19 propagation, it is possible to achieve greater accuracy in GPR training. The obtained results prove the potential possibility of using surrogate modeling methods to conduct an uncertainty quantification of the multiagent model of COVID-19 propagation." @default.
- W4310467863 created "2022-12-10" @default.
- W4310467863 creator A5043952284 @default.
- W4310467863 creator A5044353395 @default.
- W4310467863 date "2022-01-01" @default.
- W4310467863 modified "2023-09-27" @default.
- W4310467863 title "Application of Gaussian process regression as a surrogate modeling method to assess the dynamics of COVID-19 propagation" @default.
- W4310467863 cites W1981799081 @default.
- W4310467863 cites W2014945091 @default.
- W4310467863 cites W2049554061 @default.
- W4310467863 cites W2090171599 @default.
- W4310467863 cites W2113117406 @default.
- W4310467863 cites W2151084831 @default.
- W4310467863 cites W2529348500 @default.
- W4310467863 cites W2803136398 @default.
- W4310467863 cites W2811395263 @default.
- W4310467863 cites W2963348237 @default.
- W4310467863 cites W2970492920 @default.
- W4310467863 cites W3034742952 @default.
- W4310467863 cites W3098407580 @default.
- W4310467863 cites W3134237411 @default.
- W4310467863 cites W3172805039 @default.
- W4310467863 cites W3193258988 @default.
- W4310467863 cites W4212976032 @default.
- W4310467863 doi "https://doi.org/10.1016/j.procs.2022.11.018" @default.
- W4310467863 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36437869" @default.
- W4310467863 hasPublicationYear "2022" @default.
- W4310467863 type Work @default.
- W4310467863 citedByCount "0" @default.
- W4310467863 crossrefType "journal-article" @default.
- W4310467863 hasAuthorship W4310467863A5043952284 @default.
- W4310467863 hasAuthorship W4310467863A5044353395 @default.
- W4310467863 hasBestOaLocation W43104678631 @default.
- W4310467863 hasConcept C105795698 @default.
- W4310467863 hasConcept C111919701 @default.
- W4310467863 hasConcept C114614502 @default.
- W4310467863 hasConcept C119857082 @default.
- W4310467863 hasConcept C121332964 @default.
- W4310467863 hasConcept C126255220 @default.
- W4310467863 hasConcept C131675550 @default.
- W4310467863 hasConcept C142724271 @default.
- W4310467863 hasConcept C142806159 @default.
- W4310467863 hasConcept C154945302 @default.
- W4310467863 hasConcept C158622935 @default.
- W4310467863 hasConcept C163716315 @default.
- W4310467863 hasConcept C2779134260 @default.
- W4310467863 hasConcept C3008058167 @default.
- W4310467863 hasConcept C31972630 @default.
- W4310467863 hasConcept C33923547 @default.
- W4310467863 hasConcept C3770464 @default.
- W4310467863 hasConcept C41008148 @default.
- W4310467863 hasConcept C524204448 @default.
- W4310467863 hasConcept C61326573 @default.
- W4310467863 hasConcept C62520636 @default.
- W4310467863 hasConcept C71924100 @default.
- W4310467863 hasConcept C74193536 @default.
- W4310467863 hasConcept C81692654 @default.
- W4310467863 hasConcept C83546350 @default.
- W4310467863 hasConcept C98045186 @default.
- W4310467863 hasConceptScore W4310467863C105795698 @default.
- W4310467863 hasConceptScore W4310467863C111919701 @default.
- W4310467863 hasConceptScore W4310467863C114614502 @default.
- W4310467863 hasConceptScore W4310467863C119857082 @default.
- W4310467863 hasConceptScore W4310467863C121332964 @default.
- W4310467863 hasConceptScore W4310467863C126255220 @default.
- W4310467863 hasConceptScore W4310467863C131675550 @default.
- W4310467863 hasConceptScore W4310467863C142724271 @default.
- W4310467863 hasConceptScore W4310467863C142806159 @default.
- W4310467863 hasConceptScore W4310467863C154945302 @default.
- W4310467863 hasConceptScore W4310467863C158622935 @default.
- W4310467863 hasConceptScore W4310467863C163716315 @default.
- W4310467863 hasConceptScore W4310467863C2779134260 @default.
- W4310467863 hasConceptScore W4310467863C3008058167 @default.
- W4310467863 hasConceptScore W4310467863C31972630 @default.
- W4310467863 hasConceptScore W4310467863C33923547 @default.
- W4310467863 hasConceptScore W4310467863C3770464 @default.
- W4310467863 hasConceptScore W4310467863C41008148 @default.
- W4310467863 hasConceptScore W4310467863C524204448 @default.
- W4310467863 hasConceptScore W4310467863C61326573 @default.
- W4310467863 hasConceptScore W4310467863C62520636 @default.
- W4310467863 hasConceptScore W4310467863C71924100 @default.
- W4310467863 hasConceptScore W4310467863C74193536 @default.
- W4310467863 hasConceptScore W4310467863C81692654 @default.
- W4310467863 hasConceptScore W4310467863C83546350 @default.
- W4310467863 hasConceptScore W4310467863C98045186 @default.
- W4310467863 hasLocation W43104678631 @default.
- W4310467863 hasLocation W43104678632 @default.
- W4310467863 hasLocation W43104678633 @default.
- W4310467863 hasOpenAccess W4310467863 @default.
- W4310467863 hasPrimaryLocation W43104678631 @default.
- W4310467863 hasRelatedWork W2063381173 @default.
- W4310467863 hasRelatedWork W2089458270 @default.
- W4310467863 hasRelatedWork W2898664302 @default.
- W4310467863 hasRelatedWork W3012551194 @default.
- W4310467863 hasRelatedWork W3109080919 @default.
- W4310467863 hasRelatedWork W4291598244 @default.
- W4310467863 hasRelatedWork W4310467863 @default.
- W4310467863 hasRelatedWork W4313201539 @default.