Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310471961> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4310471961 abstract "There are many factors that influence global temperature changes, and some methods have been proposed to find their causes and make predictions of global temperature changes. Identifying the relationship between population and temperature change and predicting the future temperature is the top priority of this study. To achieve this stated goal, this paper proposed to construct a data structure using an artificial neural network model and normalization and show the linear relationship between population size and temperature change using Pearson correlation and normalization. To make the analysis more accurate, this paper adjusted the dataset by removing useless data and eliminating the negative effects of odd sample data. The temperature data range was restricted between -1 and 1 in the normalization step of the Artificial Neural Networks model (ANN) and used the data from 1961 to 2018 as training datasets to predict the temperature in 2019. The accuracy of the ANN model, in terms of data prediction, was verified by comparing the value with the actual temperature in 2019. The world average temperature changes from 1961 to 2019 were calculated in Excel and obtained a Pearson Correlation Coefficient of 0.92727517, which indicates a strong linear relationship between the two datasets of human population and temperature change." @default.
- W4310471961 created "2022-12-10" @default.
- W4310471961 creator A5001937247 @default.
- W4310471961 creator A5024902343 @default.
- W4310471961 creator A5040275077 @default.
- W4310471961 date "2022-11-30" @default.
- W4310471961 modified "2023-10-18" @default.
- W4310471961 title "Pearson correlation analysis and ANN prediction for population and temperature changes" @default.
- W4310471961 cites W2058779638 @default.
- W4310471961 cites W2111547563 @default.
- W4310471961 cites W2125595978 @default.
- W4310471961 cites W2166941621 @default.
- W4310471961 cites W2565212977 @default.
- W4310471961 cites W2971767930 @default.
- W4310471961 cites W3016243059 @default.
- W4310471961 cites W4239542720 @default.
- W4310471961 doi "https://doi.org/10.1117/12.2659718" @default.
- W4310471961 hasPublicationYear "2022" @default.
- W4310471961 type Work @default.
- W4310471961 citedByCount "0" @default.
- W4310471961 crossrefType "proceedings-article" @default.
- W4310471961 hasAuthorship W4310471961A5001937247 @default.
- W4310471961 hasAuthorship W4310471961A5024902343 @default.
- W4310471961 hasAuthorship W4310471961A5040275077 @default.
- W4310471961 hasConcept C105795698 @default.
- W4310471961 hasConcept C117220453 @default.
- W4310471961 hasConcept C119857082 @default.
- W4310471961 hasConcept C124101348 @default.
- W4310471961 hasConcept C136886441 @default.
- W4310471961 hasConcept C144024400 @default.
- W4310471961 hasConcept C149923435 @default.
- W4310471961 hasConcept C154945302 @default.
- W4310471961 hasConcept C19165224 @default.
- W4310471961 hasConcept C2524010 @default.
- W4310471961 hasConcept C2780092901 @default.
- W4310471961 hasConcept C2908647359 @default.
- W4310471961 hasConcept C33923547 @default.
- W4310471961 hasConcept C41008148 @default.
- W4310471961 hasConcept C50644808 @default.
- W4310471961 hasConcept C55078378 @default.
- W4310471961 hasConceptScore W4310471961C105795698 @default.
- W4310471961 hasConceptScore W4310471961C117220453 @default.
- W4310471961 hasConceptScore W4310471961C119857082 @default.
- W4310471961 hasConceptScore W4310471961C124101348 @default.
- W4310471961 hasConceptScore W4310471961C136886441 @default.
- W4310471961 hasConceptScore W4310471961C144024400 @default.
- W4310471961 hasConceptScore W4310471961C149923435 @default.
- W4310471961 hasConceptScore W4310471961C154945302 @default.
- W4310471961 hasConceptScore W4310471961C19165224 @default.
- W4310471961 hasConceptScore W4310471961C2524010 @default.
- W4310471961 hasConceptScore W4310471961C2780092901 @default.
- W4310471961 hasConceptScore W4310471961C2908647359 @default.
- W4310471961 hasConceptScore W4310471961C33923547 @default.
- W4310471961 hasConceptScore W4310471961C41008148 @default.
- W4310471961 hasConceptScore W4310471961C50644808 @default.
- W4310471961 hasConceptScore W4310471961C55078378 @default.
- W4310471961 hasLocation W43104719611 @default.
- W4310471961 hasOpenAccess W4310471961 @default.
- W4310471961 hasPrimaryLocation W43104719611 @default.
- W4310471961 hasRelatedWork W1529026127 @default.
- W4310471961 hasRelatedWork W2016874414 @default.
- W4310471961 hasRelatedWork W2123233148 @default.
- W4310471961 hasRelatedWork W2560331580 @default.
- W4310471961 hasRelatedWork W2591818399 @default.
- W4310471961 hasRelatedWork W2793350103 @default.
- W4310471961 hasRelatedWork W2969295906 @default.
- W4310471961 hasRelatedWork W3013810674 @default.
- W4310471961 hasRelatedWork W3034975167 @default.
- W4310471961 hasRelatedWork W4306698125 @default.
- W4310471961 isParatext "false" @default.
- W4310471961 isRetracted "false" @default.
- W4310471961 workType "article" @default.