Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310479520> ?p ?o ?g. }
- W4310479520 endingPage "2154" @default.
- W4310479520 startingPage "2154" @default.
- W4310479520 abstract "This study modelled the relationships between vegetation response and available water below the soil surface using Terra’s moderate resolution imaging spectroradiometer (MODIS), Normalised Difference Vegetation Index (NDVI), and soil water content (SWC). The Soil & Water Assessment Tool (SWAT) interface known as ArcSWAT was used in ArcGIS for the groundwater analysis. The SWAT model was calibrated and validated in SWAT-CUP software using 10 years (2001–2010) of monthly streamflow data. The average Nash-Sutcliffe efficiency during the calibration and validation was 0.54 and 0.51, respectively, indicating that the model performances were good. Nineteen years (2002–2020) of monthly MODIS NDVI data for three different types of vegetation (forest, shrub, and grass) and soil water content for 43 sub-basins were analysed using the WEKA, machine learning tool with a selection of two supervised machine learning algorithms, i.e., support vector machine (SVM) and random forest (RF). The modelling results show that different types of vegetation response and soil water content vary in the dry and wet seasons. For example, the model generated high positive relationships (r = 0.76, 0.73, and 0.81) between the measured and predicted NDVI values of all vegetation in the sub-basin against the groundwater flow (GW), soil water content (SWC), and combination of these two variables, respectively, during the dry season. However, these relationships were reduced by 36.8% (r = 0.48) and 13.6% (r = 0.63) against GW and SWC, respectively, in the wet season. Our models also predicted that vegetation in the top location (upper part) of the sub-basin is highly responsive to GW and SWC (r = 0.78, and 0.70) during the dry season. Although the rainfall pattern is highly variable in the study area, the summer rainfall is very effective for the growth of the grass vegetation type. The results predicted that the growth of vegetation in the top-point location is highly dependent on groundwater flow in both the dry and wet seasons, and any instability or long-term drought can negatively affect these floodplain vegetation communities. This study has enriched our knowledge of vegetation responses to groundwater in each season, which will facilitate better floodplain vegetation management." @default.
- W4310479520 created "2022-12-10" @default.
- W4310479520 creator A5024356123 @default.
- W4310479520 creator A5034198450 @default.
- W4310479520 creator A5065104513 @default.
- W4310479520 creator A5074793066 @default.
- W4310479520 date "2022-11-29" @default.
- W4310479520 modified "2023-09-26" @default.
- W4310479520 title "Modelling Floodplain Vegetation Response to Groundwater Variability Using the ArcSWAT Hydrological Model, MODIS NDVI Data, and Machine Learning" @default.
- W4310479520 cites W1796251014 @default.
- W4310479520 cites W1910050210 @default.
- W4310479520 cites W2026047711 @default.
- W4310479520 cites W2027442956 @default.
- W4310479520 cites W2028086761 @default.
- W4310479520 cites W2030775403 @default.
- W4310479520 cites W2031885280 @default.
- W4310479520 cites W2033904036 @default.
- W4310479520 cites W2036492072 @default.
- W4310479520 cites W2038693072 @default.
- W4310479520 cites W2039607781 @default.
- W4310479520 cites W2049913848 @default.
- W4310479520 cites W2058998445 @default.
- W4310479520 cites W2059646894 @default.
- W4310479520 cites W2074605948 @default.
- W4310479520 cites W2077078292 @default.
- W4310479520 cites W2081329731 @default.
- W4310479520 cites W2089333997 @default.
- W4310479520 cites W2090915513 @default.
- W4310479520 cites W2101108516 @default.
- W4310479520 cites W2114553375 @default.
- W4310479520 cites W2133990480 @default.
- W4310479520 cites W2142704078 @default.
- W4310479520 cites W2164080640 @default.
- W4310479520 cites W2164361769 @default.
- W4310479520 cites W2165301409 @default.
- W4310479520 cites W2165468080 @default.
- W4310479520 cites W2166064111 @default.
- W4310479520 cites W2188882010 @default.
- W4310479520 cites W2252197927 @default.
- W4310479520 cites W2491322704 @default.
- W4310479520 cites W2580773964 @default.
- W4310479520 cites W2585496189 @default.
- W4310479520 cites W2604359662 @default.
- W4310479520 cites W2742838558 @default.
- W4310479520 cites W2765529313 @default.
- W4310479520 cites W2777490647 @default.
- W4310479520 cites W2793154560 @default.
- W4310479520 cites W2889022662 @default.
- W4310479520 cites W2895358981 @default.
- W4310479520 cites W2912686224 @default.
- W4310479520 cites W2945155373 @default.
- W4310479520 cites W2956053481 @default.
- W4310479520 cites W3005619609 @default.
- W4310479520 cites W3014272047 @default.
- W4310479520 cites W3017078357 @default.
- W4310479520 cites W3036203102 @default.
- W4310479520 cites W3047338497 @default.
- W4310479520 cites W3081370134 @default.
- W4310479520 cites W3082644389 @default.
- W4310479520 cites W3088162569 @default.
- W4310479520 cites W3106894470 @default.
- W4310479520 cites W3107509627 @default.
- W4310479520 cites W3158885724 @default.
- W4310479520 cites W3203738044 @default.
- W4310479520 cites W4244985180 @default.
- W4310479520 cites W4293072174 @default.
- W4310479520 doi "https://doi.org/10.3390/land11122154" @default.
- W4310479520 hasPublicationYear "2022" @default.
- W4310479520 type Work @default.
- W4310479520 citedByCount "0" @default.
- W4310479520 crossrefType "journal-article" @default.
- W4310479520 hasAuthorship W4310479520A5024356123 @default.
- W4310479520 hasAuthorship W4310479520A5034198450 @default.
- W4310479520 hasAuthorship W4310479520A5065104513 @default.
- W4310479520 hasAuthorship W4310479520A5074793066 @default.
- W4310479520 hasBestOaLocation W43104795201 @default.
- W4310479520 hasConcept C111368507 @default.
- W4310479520 hasConcept C126645576 @default.
- W4310479520 hasConcept C127313418 @default.
- W4310479520 hasConcept C127413603 @default.
- W4310479520 hasConcept C132651083 @default.
- W4310479520 hasConcept C142724271 @default.
- W4310479520 hasConcept C146978453 @default.
- W4310479520 hasConcept C1549246 @default.
- W4310479520 hasConcept C159390177 @default.
- W4310479520 hasConcept C159750122 @default.
- W4310479520 hasConcept C187320778 @default.
- W4310479520 hasConcept C18903297 @default.
- W4310479520 hasConcept C19269812 @default.
- W4310479520 hasConcept C205649164 @default.
- W4310479520 hasConcept C24939127 @default.
- W4310479520 hasConcept C2776133958 @default.
- W4310479520 hasConcept C2777007095 @default.
- W4310479520 hasConcept C2780376076 @default.
- W4310479520 hasConcept C2780623283 @default.
- W4310479520 hasConcept C2780852570 @default.
- W4310479520 hasConcept C39432304 @default.
- W4310479520 hasConcept C50477045 @default.