Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310479548> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4310479548 endingPage "274" @default.
- W4310479548 startingPage "259" @default.
- W4310479548 abstract "Q learning is a machine learning technique which is used in vehicular communication network. It provides faster communication between vehicles. In this paper, we reviewed various algorithms such as value based, policy based, Model based, Q-learning based algorithm used for reinforcement learning. We highlight working of an agent, importance, applications and terminologies of Q learning. This chapter helps researchers to find out the research gap for further research." @default.
- W4310479548 created "2022-12-10" @default.
- W4310479548 creator A5022996063 @default.
- W4310479548 creator A5066406642 @default.
- W4310479548 date "2022-11-30" @default.
- W4310479548 modified "2023-10-16" @default.
- W4310479548 title "Q Learning Algorithm for Network Resource Management in Vehicular Communication Network" @default.
- W4310479548 cites W2107726111 @default.
- W4310479548 cites W2516246850 @default.
- W4310479548 cites W2896079731 @default.
- W4310479548 cites W2898035736 @default.
- W4310479548 cites W2947829929 @default.
- W4310479548 cites W2962846391 @default.
- W4310479548 cites W2998881388 @default.
- W4310479548 cites W3039623841 @default.
- W4310479548 cites W3044168612 @default.
- W4310479548 cites W3081310128 @default.
- W4310479548 cites W3119271489 @default.
- W4310479548 cites W3171435525 @default.
- W4310479548 cites W3176453742 @default.
- W4310479548 cites W3176727369 @default.
- W4310479548 cites W3195835426 @default.
- W4310479548 doi "https://doi.org/10.1002/9781394152636.ch13" @default.
- W4310479548 hasPublicationYear "2022" @default.
- W4310479548 type Work @default.
- W4310479548 citedByCount "0" @default.
- W4310479548 crossrefType "other" @default.
- W4310479548 hasAuthorship W4310479548A5022996063 @default.
- W4310479548 hasAuthorship W4310479548A5066406642 @default.
- W4310479548 hasConcept C11413529 @default.
- W4310479548 hasConcept C119857082 @default.
- W4310479548 hasConcept C154945302 @default.
- W4310479548 hasConcept C188116033 @default.
- W4310479548 hasConcept C206345919 @default.
- W4310479548 hasConcept C2987015589 @default.
- W4310479548 hasConcept C31258907 @default.
- W4310479548 hasConcept C41008148 @default.
- W4310479548 hasConcept C97541855 @default.
- W4310479548 hasConceptScore W4310479548C11413529 @default.
- W4310479548 hasConceptScore W4310479548C119857082 @default.
- W4310479548 hasConceptScore W4310479548C154945302 @default.
- W4310479548 hasConceptScore W4310479548C188116033 @default.
- W4310479548 hasConceptScore W4310479548C206345919 @default.
- W4310479548 hasConceptScore W4310479548C2987015589 @default.
- W4310479548 hasConceptScore W4310479548C31258907 @default.
- W4310479548 hasConceptScore W4310479548C41008148 @default.
- W4310479548 hasConceptScore W4310479548C97541855 @default.
- W4310479548 hasLocation W43104795481 @default.
- W4310479548 hasOpenAccess W4310479548 @default.
- W4310479548 hasPrimaryLocation W43104795481 @default.
- W4310479548 hasRelatedWork W2123899227 @default.
- W4310479548 hasRelatedWork W2154793587 @default.
- W4310479548 hasRelatedWork W260766989 @default.
- W4310479548 hasRelatedWork W2959276766 @default.
- W4310479548 hasRelatedWork W2961085424 @default.
- W4310479548 hasRelatedWork W3074294383 @default.
- W4310479548 hasRelatedWork W3096874164 @default.
- W4310479548 hasRelatedWork W4206669594 @default.
- W4310479548 hasRelatedWork W4295941380 @default.
- W4310479548 hasRelatedWork W4319083788 @default.
- W4310479548 isParatext "false" @default.
- W4310479548 isRetracted "false" @default.
- W4310479548 workType "other" @default.