Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310482330> ?p ?o ?g. }
- W4310482330 abstract "Background Inpatient violence in clinical and forensic settings is still an ongoing challenge to organizations and practitioners. Existing risk assessment instruments show only moderate benefits in clinical practice, are time consuming, and seem to scarcely generalize across different populations. In the last years, machine learning (ML) models have been applied in the study of risk factors for aggressive episodes. The objective of this systematic review is to investigate the potential of ML for identifying risk of violence in clinical and forensic populations. Methods Following Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines, a systematic review on the use of ML techniques in predicting risk of violence of psychiatric patients in clinical and forensic settings was performed. A systematic search was conducted on Medline/Pubmed, CINAHL, PsycINFO, Web of Science, and Scopus. Risk of bias and applicability assessment was performed using Prediction model Risk Of Bias ASsessment Tool (PROBAST). Results We identified 182 potentially eligible studies from 2,259 records, and 8 papers were included in this systematic review. A wide variability in the experimental settings and characteristics of the enrolled samples emerged across studies, which probably represented the major cause for the absence of shared common predictors of violence found by the models learned. Nonetheless, a general trend toward a better performance of ML methods compared to structured violence risk assessment instruments in predicting risk of violent episodes emerged, with three out of eight studies with an AUC above 0.80. However, because of the varied experimental protocols, and heterogeneity in study populations, caution is needed when trying to quantitatively compare (e.g., in terms of AUC) and derive general conclusions from these approaches. Another limitation is represented by the overall quality of the included studies that suffer from objective limitations, difficult to overcome, such as the common use of retrospective data. Conclusion Despite these limitations, ML models represent a promising approach in shedding light on predictive factors of violent episodes in clinical and forensic settings. Further research and more investments are required, preferably in large and prospective groups, to boost the application of ML models in clinical practice. Systematic review registration [ www.crd.york.ac.uk/prospero/ ], identifier [CRD42022310410]." @default.
- W4310482330 created "2022-12-10" @default.
- W4310482330 creator A5026657545 @default.
- W4310482330 creator A5035402571 @default.
- W4310482330 creator A5038302025 @default.
- W4310482330 creator A5084753554 @default.
- W4310482330 creator A5089817578 @default.
- W4310482330 date "2022-12-01" @default.
- W4310482330 modified "2023-10-05" @default.
- W4310482330 title "The impact of machine learning in predicting risk of violence: A systematic review" @default.
- W4310482330 cites W1995546106 @default.
- W4310482330 cites W2006940889 @default.
- W4310482330 cites W2019694480 @default.
- W4310482330 cites W2077663753 @default.
- W4310482330 cites W2100798310 @default.
- W4310482330 cites W2113870592 @default.
- W4310482330 cites W2125615230 @default.
- W4310482330 cites W2139205955 @default.
- W4310482330 cites W2160661086 @default.
- W4310482330 cites W2790248149 @default.
- W4310482330 cites W2797831139 @default.
- W4310482330 cites W2808358301 @default.
- W4310482330 cites W2884794618 @default.
- W4310482330 cites W2885069035 @default.
- W4310482330 cites W2907638671 @default.
- W4310482330 cites W2955699460 @default.
- W4310482330 cites W3012413426 @default.
- W4310482330 cites W3014098926 @default.
- W4310482330 cites W3016221674 @default.
- W4310482330 cites W3017208276 @default.
- W4310482330 cites W3022903699 @default.
- W4310482330 cites W3093944260 @default.
- W4310482330 cites W3149244341 @default.
- W4310482330 cites W3152854861 @default.
- W4310482330 cites W3211652376 @default.
- W4310482330 cites W4233026002 @default.
- W4310482330 cites W4255331412 @default.
- W4310482330 cites W633104163 @default.
- W4310482330 doi "https://doi.org/10.3389/fpsyt.2022.1015914" @default.
- W4310482330 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36532168" @default.
- W4310482330 hasPublicationYear "2022" @default.
- W4310482330 type Work @default.
- W4310482330 citedByCount "2" @default.
- W4310482330 countsByYear W43104823302023 @default.
- W4310482330 crossrefType "journal-article" @default.
- W4310482330 hasAuthorship W4310482330A5026657545 @default.
- W4310482330 hasAuthorship W4310482330A5035402571 @default.
- W4310482330 hasAuthorship W4310482330A5038302025 @default.
- W4310482330 hasAuthorship W4310482330A5084753554 @default.
- W4310482330 hasAuthorship W4310482330A5089817578 @default.
- W4310482330 hasBestOaLocation W43104823301 @default.
- W4310482330 hasConcept C118552586 @default.
- W4310482330 hasConcept C12174686 @default.
- W4310482330 hasConcept C15744967 @default.
- W4310482330 hasConcept C17744445 @default.
- W4310482330 hasConcept C189708586 @default.
- W4310482330 hasConcept C190385971 @default.
- W4310482330 hasConcept C199539241 @default.
- W4310482330 hasConcept C27415008 @default.
- W4310482330 hasConcept C2779473830 @default.
- W4310482330 hasConcept C2779549880 @default.
- W4310482330 hasConcept C2781145037 @default.
- W4310482330 hasConcept C3017944768 @default.
- W4310482330 hasConcept C38652104 @default.
- W4310482330 hasConcept C41008148 @default.
- W4310482330 hasConcept C545542383 @default.
- W4310482330 hasConcept C70410870 @default.
- W4310482330 hasConcept C71924100 @default.
- W4310482330 hasConcept C83867959 @default.
- W4310482330 hasConceptScore W4310482330C118552586 @default.
- W4310482330 hasConceptScore W4310482330C12174686 @default.
- W4310482330 hasConceptScore W4310482330C15744967 @default.
- W4310482330 hasConceptScore W4310482330C17744445 @default.
- W4310482330 hasConceptScore W4310482330C189708586 @default.
- W4310482330 hasConceptScore W4310482330C190385971 @default.
- W4310482330 hasConceptScore W4310482330C199539241 @default.
- W4310482330 hasConceptScore W4310482330C27415008 @default.
- W4310482330 hasConceptScore W4310482330C2779473830 @default.
- W4310482330 hasConceptScore W4310482330C2779549880 @default.
- W4310482330 hasConceptScore W4310482330C2781145037 @default.
- W4310482330 hasConceptScore W4310482330C3017944768 @default.
- W4310482330 hasConceptScore W4310482330C38652104 @default.
- W4310482330 hasConceptScore W4310482330C41008148 @default.
- W4310482330 hasConceptScore W4310482330C545542383 @default.
- W4310482330 hasConceptScore W4310482330C70410870 @default.
- W4310482330 hasConceptScore W4310482330C71924100 @default.
- W4310482330 hasConceptScore W4310482330C83867959 @default.
- W4310482330 hasLocation W43104823301 @default.
- W4310482330 hasLocation W43104823302 @default.
- W4310482330 hasLocation W43104823303 @default.
- W4310482330 hasLocation W43104823304 @default.
- W4310482330 hasLocation W43104823305 @default.
- W4310482330 hasOpenAccess W4310482330 @default.
- W4310482330 hasPrimaryLocation W43104823301 @default.
- W4310482330 hasRelatedWork W1487844521 @default.
- W4310482330 hasRelatedWork W3020194755 @default.
- W4310482330 hasRelatedWork W3096237762 @default.
- W4310482330 hasRelatedWork W3134249822 @default.
- W4310482330 hasRelatedWork W3170371879 @default.
- W4310482330 hasRelatedWork W3170794693 @default.