Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310482371> ?p ?o ?g. }
- W4310482371 abstract "A pipeline is proposed here to describe different features to study brain microcircuits on a histological scale using multi-scale analyses, including the uniform manifold approximation and projection (UMAP) dimensional reduction technique and modularity algorithm to identify neuronal ensembles, Runs tests to show significant ensembles activation, graph theory to show trajectories between ensembles, and recurrence analyses to describe how regular or chaotic ensembles dynamics are. The data set includes ex-vivo NMDA-activated striatal tissue in control conditions as well as experimental models of disease states: decorticated, dopamine depleted, and L-DOPA-induced dyskinetic rodent samples. The goal was to separate neuronal ensembles that have correlated activity patterns. The pipeline allows for the demonstration of differences between disease states in a brain slice. First, the ensembles were projected in distinctive locations in the UMAP space. Second, graphs revealed functional connectivity between neurons comprising neuronal ensembles. Third, the Runs test detected significant peaks of coactivity within neuronal ensembles. Fourth, significant peaks of coactivity were used to show activity transitions between ensembles, revealing recurrent temporal sequences between them. Fifth, recurrence analysis shows how deterministic, chaotic, or recurrent these circuits are. We found that all revealed circuits had recurrent activity except for the decorticated circuits, which tended to be divergent and chaotic. The Parkinsonian circuits exhibit fewer transitions, becoming rigid and deterministic, exhibiting a predominant temporal sequence that disrupts transitions found in the controls, thus resembling the clinical signs of rigidity and paucity of movements. Dyskinetic circuits display a higher recurrence rate between neuronal ensembles transitions, paralleling clinical findings: enhancement in involuntary movements. These findings confirm that looking at neuronal circuits at the histological scale, recording dozens of neurons simultaneously, can show clear differences between control and diseased striatal states: fingerprints of the disease states. Therefore, the present analysis is coherent with previous ones of striatal disease states, showing that data obtained from the tissue are robust. At the same time, it adds heuristic ways to interpret circuitry activity in different states." @default.
- W4310482371 created "2022-12-10" @default.
- W4310482371 creator A5000276368 @default.
- W4310482371 creator A5001422117 @default.
- W4310482371 creator A5008734945 @default.
- W4310482371 creator A5014822614 @default.
- W4310482371 creator A5036093129 @default.
- W4310482371 creator A5064791807 @default.
- W4310482371 creator A5080402342 @default.
- W4310482371 date "2022-12-01" @default.
- W4310482371 modified "2023-10-10" @default.
- W4310482371 title "Dimensionality reduction and recurrence analysis reveal hidden structures of striatal pathological states" @default.
- W4310482371 cites W1120142027 @default.
- W4310482371 cites W1510964369 @default.
- W4310482371 cites W1963765956 @default.
- W4310482371 cites W1966260988 @default.
- W4310482371 cites W1968261149 @default.
- W4310482371 cites W1972834324 @default.
- W4310482371 cites W1976365965 @default.
- W4310482371 cites W1982479994 @default.
- W4310482371 cites W1984309035 @default.
- W4310482371 cites W1984391316 @default.
- W4310482371 cites W1994636041 @default.
- W4310482371 cites W1996276412 @default.
- W4310482371 cites W1996874802 @default.
- W4310482371 cites W2012425079 @default.
- W4310482371 cites W2012567998 @default.
- W4310482371 cites W2032319886 @default.
- W4310482371 cites W2038591487 @default.
- W4310482371 cites W2064869244 @default.
- W4310482371 cites W2076351644 @default.
- W4310482371 cites W2081681829 @default.
- W4310482371 cites W2085048370 @default.
- W4310482371 cites W2086327058 @default.
- W4310482371 cites W2089315051 @default.
- W4310482371 cites W2093972428 @default.
- W4310482371 cites W2099593264 @default.
- W4310482371 cites W2108139264 @default.
- W4310482371 cites W2112090702 @default.
- W4310482371 cites W2123469945 @default.
- W4310482371 cites W2128084896 @default.
- W4310482371 cites W2151936673 @default.
- W4310482371 cites W2167822639 @default.
- W4310482371 cites W2289514760 @default.
- W4310482371 cites W2303815889 @default.
- W4310482371 cites W2508029759 @default.
- W4310482371 cites W2513986326 @default.
- W4310482371 cites W2544632598 @default.
- W4310482371 cites W2557952175 @default.
- W4310482371 cites W2603409505 @default.
- W4310482371 cites W2605115788 @default.
- W4310482371 cites W2766207524 @default.
- W4310482371 cites W2766505053 @default.
- W4310482371 cites W2778455401 @default.
- W4310482371 cites W2889238383 @default.
- W4310482371 cites W2889326414 @default.
- W4310482371 cites W2900798233 @default.
- W4310482371 cites W2902652978 @default.
- W4310482371 cites W2909328871 @default.
- W4310482371 cites W2911106714 @default.
- W4310482371 cites W2911430788 @default.
- W4310482371 cites W2922355484 @default.
- W4310482371 cites W2944074711 @default.
- W4310482371 cites W2944618478 @default.
- W4310482371 cites W2949747935 @default.
- W4310482371 cites W2950962444 @default.
- W4310482371 cites W2997815265 @default.
- W4310482371 cites W3082816887 @default.
- W4310482371 cites W3115080291 @default.
- W4310482371 cites W3116338783 @default.
- W4310482371 cites W3118807720 @default.
- W4310482371 cites W3155255999 @default.
- W4310482371 cites W3155379073 @default.
- W4310482371 cites W3156433428 @default.
- W4310482371 cites W3186517658 @default.
- W4310482371 cites W3194460250 @default.
- W4310482371 cites W4220887116 @default.
- W4310482371 cites W4234756960 @default.
- W4310482371 cites W4292869868 @default.
- W4310482371 cites W4300669582 @default.
- W4310482371 doi "https://doi.org/10.3389/fnsys.2022.975989" @default.
- W4310482371 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36741818" @default.
- W4310482371 hasPublicationYear "2022" @default.
- W4310482371 type Work @default.
- W4310482371 citedByCount "1" @default.
- W4310482371 countsByYear W43104823712023 @default.
- W4310482371 crossrefType "journal-article" @default.
- W4310482371 hasAuthorship W4310482371A5000276368 @default.
- W4310482371 hasAuthorship W4310482371A5001422117 @default.
- W4310482371 hasAuthorship W4310482371A5008734945 @default.
- W4310482371 hasAuthorship W4310482371A5014822614 @default.
- W4310482371 hasAuthorship W4310482371A5036093129 @default.
- W4310482371 hasAuthorship W4310482371A5064791807 @default.
- W4310482371 hasAuthorship W4310482371A5080402342 @default.
- W4310482371 hasBestOaLocation W43104823711 @default.
- W4310482371 hasConcept C118403218 @default.
- W4310482371 hasConcept C153180895 @default.
- W4310482371 hasConcept C154945302 @default.
- W4310482371 hasConcept C169760540 @default.
- W4310482371 hasConcept C2777052490 @default.