Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310490762> ?p ?o ?g. }
- W4310490762 endingPage "104718" @default.
- W4310490762 startingPage "104718" @default.
- W4310490762 abstract "Ganoderma boninense (G. boninense) infection reduces the productivity of oil palms and causes a severe threat to the palm oil industry. Early detection of G. boninense is vital since there is no effective treatment to stop the continuing spread of the disease unless ergosterol, a biomarker of G. boninense can be detected. There is yet a non-destructive and in-situ technique explored to detect ergosterol. Capability of NIR to detect few biomarkers such as mycotoxin and zearalenone (ZEN) has been proven to pave the way an effort to explore NIR's sensitivity towards detecting ergosterol, as discussed in this paper. A compact hand-held NIR with a measurement range of 900–1700 nm is utilized by scanning the leaves of three oil palm seedlings inoculated with G. boninense while the other three were non-inoculated from 16-weeks-old to 32-weeks-old. Significant changes of spectral reflectance have been notified occur at the wavelength of ∼1450 nm which reflectance of infected sample is higher 0.2–0.4 than healthy sample which 0.1–0.19. The diminishing of the spectral curve at approximately 1450 nm is strongly suspected to happened due to the loss of water content from the leaves since G. boninense attacks the roots and causes the disruption of water supply to the other part of plant. However, a few overlapped NIRs' spectral data between healthy and infected samples require for further validation which chemometric and machine learning (ML) classification technique are chosen. It is found the spectra of healthy samples are scattered on the negative sides of PC-1 while infected samples tend to be on a positive side with large loading coefficients marked significant discriminatory effect on healthy and infected samples at the wavelength of 1310 and 1452 nm. A PLS regression is used on NIR spectra to implement the prediction of ergosterol concentration which shows good corelation of R = 0.861 between the ergosterol concentration and oil palm NIR spectra. Four different ML algorithms are tested for prediction of G. boninense infection: K-Nearest Neighbour (kNN), Naïve Bayes (NB), Support Vector Machine (SVM) and Decision Tree (DT) are tested which depicted DT algorithm achieves a satisfactory overall performance with high accuracy up to 93.1% and F1-score of 92.6% compared to other algorithms. High accuracy shows the capability of the classification model to correctly predict the G. boninense detection while high F1-score indicates that the classification is able to validate the detection of G. boninense correctly with low misclassification rate. The result represents a significant step in the development of a non-destructive and in-situ detection system which validated by both chemometric and machine learning (ML) classification techniques." @default.
- W4310490762 created "2022-12-11" @default.
- W4310490762 creator A5020175801 @default.
- W4310490762 creator A5026102955 @default.
- W4310490762 creator A5029487733 @default.
- W4310490762 creator A5042888490 @default.
- W4310490762 creator A5064295366 @default.
- W4310490762 date "2023-01-01" @default.
- W4310490762 modified "2023-09-26" @default.
- W4310490762 title "Ganoderma boninense classification based on near-infrared spectral data using machine learning techniques" @default.
- W4310490762 cites W1012096557 @default.
- W4310490762 cites W1964946121 @default.
- W4310490762 cites W1974011973 @default.
- W4310490762 cites W1997047867 @default.
- W4310490762 cites W2000628371 @default.
- W4310490762 cites W2019824309 @default.
- W4310490762 cites W2021754455 @default.
- W4310490762 cites W2031462881 @default.
- W4310490762 cites W2038550525 @default.
- W4310490762 cites W2042082825 @default.
- W4310490762 cites W2057561052 @default.
- W4310490762 cites W2062946716 @default.
- W4310490762 cites W2094675949 @default.
- W4310490762 cites W2113454941 @default.
- W4310490762 cites W2121882581 @default.
- W4310490762 cites W2122111042 @default.
- W4310490762 cites W2140502993 @default.
- W4310490762 cites W2141042741 @default.
- W4310490762 cites W2142827986 @default.
- W4310490762 cites W2145392172 @default.
- W4310490762 cites W2146572007 @default.
- W4310490762 cites W2530977138 @default.
- W4310490762 cites W2562515443 @default.
- W4310490762 cites W2605010402 @default.
- W4310490762 cites W2625478334 @default.
- W4310490762 cites W2735928252 @default.
- W4310490762 cites W2736770001 @default.
- W4310490762 cites W2781128543 @default.
- W4310490762 cites W2887046747 @default.
- W4310490762 cites W2890570825 @default.
- W4310490762 cites W2947836010 @default.
- W4310490762 cites W2948011498 @default.
- W4310490762 cites W2953379242 @default.
- W4310490762 cites W2981679558 @default.
- W4310490762 cites W2991140181 @default.
- W4310490762 cites W3016222145 @default.
- W4310490762 cites W3031970243 @default.
- W4310490762 cites W3089819184 @default.
- W4310490762 cites W3119890564 @default.
- W4310490762 cites W3154492986 @default.
- W4310490762 cites W3157826077 @default.
- W4310490762 cites W3168293348 @default.
- W4310490762 cites W3169731340 @default.
- W4310490762 cites W3176032453 @default.
- W4310490762 cites W4225424837 @default.
- W4310490762 cites W4376596389 @default.
- W4310490762 doi "https://doi.org/10.1016/j.chemolab.2022.104718" @default.
- W4310490762 hasPublicationYear "2023" @default.
- W4310490762 type Work @default.
- W4310490762 citedByCount "2" @default.
- W4310490762 countsByYear W43104907622023 @default.
- W4310490762 crossrefType "journal-article" @default.
- W4310490762 hasAuthorship W4310490762A5020175801 @default.
- W4310490762 hasAuthorship W4310490762A5026102955 @default.
- W4310490762 hasAuthorship W4310490762A5029487733 @default.
- W4310490762 hasAuthorship W4310490762A5042888490 @default.
- W4310490762 hasAuthorship W4310490762A5064295366 @default.
- W4310490762 hasConcept C108597893 @default.
- W4310490762 hasConcept C120665830 @default.
- W4310490762 hasConcept C121332964 @default.
- W4310490762 hasConcept C144027150 @default.
- W4310490762 hasConcept C169760540 @default.
- W4310490762 hasConcept C192562407 @default.
- W4310490762 hasConcept C2776618520 @default.
- W4310490762 hasConcept C2777910421 @default.
- W4310490762 hasConcept C2988237154 @default.
- W4310490762 hasConcept C2992117060 @default.
- W4310490762 hasConcept C2992468417 @default.
- W4310490762 hasConcept C31903555 @default.
- W4310490762 hasConcept C43571822 @default.
- W4310490762 hasConcept C59822182 @default.
- W4310490762 hasConcept C86803240 @default.
- W4310490762 hasConceptScore W4310490762C108597893 @default.
- W4310490762 hasConceptScore W4310490762C120665830 @default.
- W4310490762 hasConceptScore W4310490762C121332964 @default.
- W4310490762 hasConceptScore W4310490762C144027150 @default.
- W4310490762 hasConceptScore W4310490762C169760540 @default.
- W4310490762 hasConceptScore W4310490762C192562407 @default.
- W4310490762 hasConceptScore W4310490762C2776618520 @default.
- W4310490762 hasConceptScore W4310490762C2777910421 @default.
- W4310490762 hasConceptScore W4310490762C2988237154 @default.
- W4310490762 hasConceptScore W4310490762C2992117060 @default.
- W4310490762 hasConceptScore W4310490762C2992468417 @default.
- W4310490762 hasConceptScore W4310490762C31903555 @default.
- W4310490762 hasConceptScore W4310490762C43571822 @default.
- W4310490762 hasConceptScore W4310490762C59822182 @default.
- W4310490762 hasConceptScore W4310490762C86803240 @default.
- W4310490762 hasLocation W43104907621 @default.