Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310491011> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4310491011 abstract "The neighbor-joining (NJ) algorithm is a widely used method to perform iterative clustering and forms the basis for phylogenetic reconstruction in several bioinformatic pipelines. Although NJ is considered to be a computationally efficient algorithm, it does not scale well for datasets exceeding several thousand taxa (>100 000). Optimizations to the canonical NJ algorithm have been proposed; these optimizations are, however, achieved through approximations or extensive memory usage, which is not feasible for large datasets.In this article, two new algorithms, dynamic neighbor joining (DNJ) and heuristic neighbor joining (HNJ), are presented, which optimize the canonical NJ method to scale to millions of taxa without increasing the memory requirements. Both DNJ and HNJ outperform the current gold standard methods to construct NJ trees, while DNJ is guaranteed to produce exact NJ trees.https://bitbucket.org/genomicepidemiology/ccphylo.git.Supplementary data are available at Bioinformatics online." @default.
- W4310491011 created "2022-12-11" @default.
- W4310491011 creator A5004393393 @default.
- W4310491011 date "2022-12-01" @default.
- W4310491011 modified "2023-10-17" @default.
- W4310491011 title "Scaling neighbor joining to one million taxa with dynamic and heuristic neighbor joining" @default.
- W4310491011 cites W2014141753 @default.
- W4310491011 cites W2028715154 @default.
- W4310491011 cites W2031611770 @default.
- W4310491011 cites W2035831318 @default.
- W4310491011 cites W2096525273 @default.
- W4310491011 cites W2097706568 @default.
- W4310491011 cites W2109586018 @default.
- W4310491011 cites W2111802622 @default.
- W4310491011 cites W2120636855 @default.
- W4310491011 cites W2127520112 @default.
- W4310491011 cites W2134852597 @default.
- W4310491011 cites W2137995988 @default.
- W4310491011 cites W2611919322 @default.
- W4310491011 cites W2789843538 @default.
- W4310491011 cites W2807731504 @default.
- W4310491011 cites W2889178232 @default.
- W4310491011 cites W2950150251 @default.
- W4310491011 cites W3003217347 @default.
- W4310491011 cites W3012135270 @default.
- W4310491011 cites W3036890695 @default.
- W4310491011 cites W3119321472 @default.
- W4310491011 cites W3154583975 @default.
- W4310491011 cites W4226314289 @default.
- W4310491011 cites W4239634997 @default.
- W4310491011 doi "https://doi.org/10.1093/bioinformatics/btac774" @default.
- W4310491011 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36453849" @default.
- W4310491011 hasPublicationYear "2022" @default.
- W4310491011 type Work @default.
- W4310491011 citedByCount "0" @default.
- W4310491011 crossrefType "journal-article" @default.
- W4310491011 hasAuthorship W4310491011A5004393393 @default.
- W4310491011 hasBestOaLocation W43104910111 @default.
- W4310491011 hasConcept C104317684 @default.
- W4310491011 hasConcept C113238511 @default.
- W4310491011 hasConcept C11413529 @default.
- W4310491011 hasConcept C124101348 @default.
- W4310491011 hasConcept C154945302 @default.
- W4310491011 hasConcept C162319229 @default.
- W4310491011 hasConcept C173801870 @default.
- W4310491011 hasConcept C190290938 @default.
- W4310491011 hasConcept C193252679 @default.
- W4310491011 hasConcept C199360897 @default.
- W4310491011 hasConcept C2524010 @default.
- W4310491011 hasConcept C2780801425 @default.
- W4310491011 hasConcept C33923547 @default.
- W4310491011 hasConcept C41008148 @default.
- W4310491011 hasConcept C55493867 @default.
- W4310491011 hasConcept C73555534 @default.
- W4310491011 hasConcept C86803240 @default.
- W4310491011 hasConcept C99844830 @default.
- W4310491011 hasConceptScore W4310491011C104317684 @default.
- W4310491011 hasConceptScore W4310491011C113238511 @default.
- W4310491011 hasConceptScore W4310491011C11413529 @default.
- W4310491011 hasConceptScore W4310491011C124101348 @default.
- W4310491011 hasConceptScore W4310491011C154945302 @default.
- W4310491011 hasConceptScore W4310491011C162319229 @default.
- W4310491011 hasConceptScore W4310491011C173801870 @default.
- W4310491011 hasConceptScore W4310491011C190290938 @default.
- W4310491011 hasConceptScore W4310491011C193252679 @default.
- W4310491011 hasConceptScore W4310491011C199360897 @default.
- W4310491011 hasConceptScore W4310491011C2524010 @default.
- W4310491011 hasConceptScore W4310491011C2780801425 @default.
- W4310491011 hasConceptScore W4310491011C33923547 @default.
- W4310491011 hasConceptScore W4310491011C41008148 @default.
- W4310491011 hasConceptScore W4310491011C55493867 @default.
- W4310491011 hasConceptScore W4310491011C73555534 @default.
- W4310491011 hasConceptScore W4310491011C86803240 @default.
- W4310491011 hasConceptScore W4310491011C99844830 @default.
- W4310491011 hasFunder F4320325957 @default.
- W4310491011 hasIssue "1" @default.
- W4310491011 hasLocation W43104910111 @default.
- W4310491011 hasLocation W43104910112 @default.
- W4310491011 hasLocation W43104910113 @default.
- W4310491011 hasLocation W43104910114 @default.
- W4310491011 hasOpenAccess W4310491011 @default.
- W4310491011 hasPrimaryLocation W43104910111 @default.
- W4310491011 hasRelatedWork W1480386223 @default.
- W4310491011 hasRelatedWork W1999627569 @default.
- W4310491011 hasRelatedWork W2157179134 @default.
- W4310491011 hasRelatedWork W2351571780 @default.
- W4310491011 hasRelatedWork W2376605347 @default.
- W4310491011 hasRelatedWork W2393866865 @default.
- W4310491011 hasRelatedWork W2564491406 @default.
- W4310491011 hasRelatedWork W3160572928 @default.
- W4310491011 hasRelatedWork W3208326136 @default.
- W4310491011 hasRelatedWork W763609066 @default.
- W4310491011 hasVolume "39" @default.
- W4310491011 isParatext "false" @default.
- W4310491011 isRetracted "false" @default.
- W4310491011 workType "article" @default.