Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310496997> ?p ?o ?g. }
- W4310496997 endingPage "252" @default.
- W4310496997 startingPage "240" @default.
- W4310496997 abstract "New Findings What is the central question of this study? Skeletal muscle extracellular vesicles likely act as pro‐angiogenic signalling factors: does overexpression of peroxisome proliferator‐activated receptor γ coactivator 1‐α (PGC‐1α) alter skeletal muscle myotube extracellular vesicle release, contents and angiogenic potential? What is the main finding and its importance? Overexpression of PGC‐1α results in secretion of extracellular vesicles that elevate measures of angiogenesis and protect against acute oxidative stress in vitro. Skeletal muscle with high levels of PGC‐1α expression, commonly associated with exercise induced angiogenesis and high basal capillarization, may secrete extracellular vesicles that support capillary growth and maintenance. Abstract Skeletal muscle capillarization is proportional to muscle fibre mitochondrial content and oxidative capacity. Skeletal muscle cells secrete many factors that regulate neighbouring capillary endothelial cells (ECs), including extracellular vesicles (SkM‐EVs). Peroxisome proliferator‐activated receptor γ coactivator 1‐α (PGC‐1α) regulates mitochondrial biogenesis and the oxidative phenotype in skeletal muscle. Skeletal muscle PGC‐1α also regulates secretion of multiple angiogenic factors, but it is unknown whether PGC‐1α regulates SkM‐EV release, contents and angiogenic signalling potential. PGC‐1α was overexpressed via adenovirus in primary human myotubes. EVs were collected from PGC‐1α‐overexpressing myotubes (PGC‐EVs) as well as from green fluorescent protein‐overexpressing myotubes (GFP‐EVs), and from untreated myotubes. EV release and select mRNA contents were measured from EVs. Additionally, ECs were treated with EVs to measure angiogenic potential of EVs in normal conditions and following an oxidative stress challenge. PGC‐1α overexpression did not impact EV release but did elevate EV content of mRNAs for several antioxidant proteins (nuclear factor erythroid 2‐related factor 2, superoxide dismutase 2, glutathione peroxidase). PGC‐EV treatment of cultured human umbilical vein endothelial cells (HUVECs) increased their proliferation (+36.6%), tube formation (length: +28.1%; number: +25.7%) and cellular viability (+52.9%), and reduced reactive oxygen species levels (−41%) compared to GFP‐EVs. Additionally, PGC‐EV treatment protected against tube formation impairments and induction of cellular senescence following acute oxidative stress. Overexpression of PGC‐1α in human myotubes increases the angiogenic potential of SkM‐EVs. These angiogenic benefits coincided with increased anti‐oxidative capacity of recipient HUVECs. High PGC‐1α expression in skeletal muscle may prompt the release of SkM‐EVs that support vascular redox homeostasis and angiogenesis." @default.
- W4310496997 created "2022-12-11" @default.
- W4310496997 creator A5002697085 @default.
- W4310496997 creator A5022056539 @default.
- W4310496997 creator A5061594246 @default.
- W4310496997 creator A5064656583 @default.
- W4310496997 creator A5066588986 @default.
- W4310496997 creator A5085471406 @default.
- W4310496997 creator A5090329771 @default.
- W4310496997 creator A5091049288 @default.
- W4310496997 date "2022-12-01" @default.
- W4310496997 modified "2023-10-07" @default.
- W4310496997 title "Peroxisome proliferator‐activated receptor γ coactivator 1‐α overexpression improves angiogenic signalling potential of skeletal muscle‐derived extracellular vesicles" @default.
- W4310496997 cites W1524273338 @default.
- W4310496997 cites W1566110341 @default.
- W4310496997 cites W1969392895 @default.
- W4310496997 cites W1971082641 @default.
- W4310496997 cites W1974228020 @default.
- W4310496997 cites W1985130783 @default.
- W4310496997 cites W1986970772 @default.
- W4310496997 cites W2005850081 @default.
- W4310496997 cites W2006545231 @default.
- W4310496997 cites W2020972070 @default.
- W4310496997 cites W2049552713 @default.
- W4310496997 cites W2053765200 @default.
- W4310496997 cites W2055791162 @default.
- W4310496997 cites W2065002329 @default.
- W4310496997 cites W2070805734 @default.
- W4310496997 cites W2075479208 @default.
- W4310496997 cites W2079833285 @default.
- W4310496997 cites W2083456009 @default.
- W4310496997 cites W2097197709 @default.
- W4310496997 cites W2097223443 @default.
- W4310496997 cites W2100779832 @default.
- W4310496997 cites W2104525538 @default.
- W4310496997 cites W2114135748 @default.
- W4310496997 cites W2119429444 @default.
- W4310496997 cites W2121823236 @default.
- W4310496997 cites W2143113982 @default.
- W4310496997 cites W2143631351 @default.
- W4310496997 cites W2148637873 @default.
- W4310496997 cites W2160581548 @default.
- W4310496997 cites W2161859073 @default.
- W4310496997 cites W2162640412 @default.
- W4310496997 cites W219060072 @default.
- W4310496997 cites W2211955807 @default.
- W4310496997 cites W2400781500 @default.
- W4310496997 cites W2415232423 @default.
- W4310496997 cites W2475285668 @default.
- W4310496997 cites W2563686128 @default.
- W4310496997 cites W2567527198 @default.
- W4310496997 cites W2605026741 @default.
- W4310496997 cites W2754047748 @default.
- W4310496997 cites W2800782260 @default.
- W4310496997 cites W2900756811 @default.
- W4310496997 cites W2911955002 @default.
- W4310496997 cites W2945170397 @default.
- W4310496997 cites W2945516613 @default.
- W4310496997 cites W3011208275 @default.
- W4310496997 cites W3022014008 @default.
- W4310496997 cites W3022900443 @default.
- W4310496997 cites W3042689819 @default.
- W4310496997 cites W3045497015 @default.
- W4310496997 cites W3110187286 @default.
- W4310496997 cites W3140020746 @default.
- W4310496997 cites W3159886645 @default.
- W4310496997 cites W3188595299 @default.
- W4310496997 cites W3211075164 @default.
- W4310496997 cites W4200014340 @default.
- W4310496997 cites W4211066528 @default.
- W4310496997 cites W4225301787 @default.
- W4310496997 doi "https://doi.org/10.1113/ep090874" @default.
- W4310496997 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36454193" @default.
- W4310496997 hasPublicationYear "2022" @default.
- W4310496997 type Work @default.
- W4310496997 citedByCount "1" @default.
- W4310496997 countsByYear W43104969972023 @default.
- W4310496997 crossrefType "journal-article" @default.
- W4310496997 hasAuthorship W4310496997A5002697085 @default.
- W4310496997 hasAuthorship W4310496997A5022056539 @default.
- W4310496997 hasAuthorship W4310496997A5061594246 @default.
- W4310496997 hasAuthorship W4310496997A5064656583 @default.
- W4310496997 hasAuthorship W4310496997A5066588986 @default.
- W4310496997 hasAuthorship W4310496997A5085471406 @default.
- W4310496997 hasAuthorship W4310496997A5090329771 @default.
- W4310496997 hasAuthorship W4310496997A5091049288 @default.
- W4310496997 hasBestOaLocation W43104969971 @default.
- W4310496997 hasConcept C104317684 @default.
- W4310496997 hasConcept C126322002 @default.
- W4310496997 hasConcept C134018914 @default.
- W4310496997 hasConcept C170493617 @default.
- W4310496997 hasConcept C187345961 @default.
- W4310496997 hasConcept C207200792 @default.
- W4310496997 hasConcept C2777229759 @default.
- W4310496997 hasConcept C2779959927 @default.
- W4310496997 hasConcept C2780394083 @default.
- W4310496997 hasConcept C28406088 @default.
- W4310496997 hasConcept C28859421 @default.