Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310497343> ?p ?o ?g. }
- W4310497343 abstract "Linking high-throughput environmental data (enviromics) to genomic prediction (GP) is a cost-effective strategy for increasing selection intensity under genotype-by-environment interactions (G × E). This study developed a data-driven approach based on Environment-Phenotype Association (EPA) aimed at recycling important G × E information from historical breeding data. EPA was developed in two applications: (1) scanning a secondary source of genetic variation, weighted from the shared reaction-norms of past-evaluated genotypes and (2) pinpointing weights of the similarity among trial-sites (locations), given the historical impact of each envirotyping data variable for a given site. These results were then used as a dimensionality reduction strategy, integrating historical data to feed multi-environment GP models, which led to the development of four new G × E kernels considering genomics, enviromics, and EPA outcomes. The wheat trial data used included 36 locations, 8 years, and three target populations of environments (TPEs) in India. Four prediction scenarios and six kernel models within/across TPEs were tested. Our results suggest that the conventional GBLUP, without enviromic data or when omitting EPA, is inefficient in predicting the performance of wheat lines in future years. Nevertheless, when EPA was introduced as an intermediary learning step to reduce the dimensionality of the G × E kernels while connecting phenotypic and environmental-wide variation, a significant enhancement of G × E prediction accuracy was evident. EPA revealed that the effect of seasonality makes strategies such as covariable selection unfeasible because G × E is year-germplasm specific. We propose that the EPA effectively serves as a reinforcement learner algorithm capable of uncovering the effect of seasonality over the reaction-norms, with the benefits of better forecasting the similarities between past and future trialing sites. EPA combines the benefits of dimensionality reduction while reducing the uncertainty of genotype-by-year predictions and increasing the resolution of GP for the genotype-specific level." @default.
- W4310497343 created "2022-12-11" @default.
- W4310497343 creator A5005759008 @default.
- W4310497343 creator A5006576169 @default.
- W4310497343 creator A5013298400 @default.
- W4310497343 creator A5032289984 @default.
- W4310497343 creator A5037946457 @default.
- W4310497343 creator A5044237663 @default.
- W4310497343 creator A5045062917 @default.
- W4310497343 creator A5049389291 @default.
- W4310497343 creator A5089922603 @default.
- W4310497343 date "2022-12-01" @default.
- W4310497343 modified "2023-10-18" @default.
- W4310497343 title "Envirome-wide associations enhance multi-year genome-based prediction of historical wheat breeding data" @default.
- W4310497343 cites W1219574734 @default.
- W4310497343 cites W1986037157 @default.
- W4310497343 cites W1988200920 @default.
- W4310497343 cites W1992797747 @default.
- W4310497343 cites W1999106449 @default.
- W4310497343 cites W2001754080 @default.
- W4310497343 cites W2008508856 @default.
- W4310497343 cites W2010562603 @default.
- W4310497343 cites W2026607452 @default.
- W4310497343 cites W2030126026 @default.
- W4310497343 cites W2041607989 @default.
- W4310497343 cites W2047769598 @default.
- W4310497343 cites W2071108497 @default.
- W4310497343 cites W2076772232 @default.
- W4310497343 cites W2078362988 @default.
- W4310497343 cites W2084956990 @default.
- W4310497343 cites W2094397782 @default.
- W4310497343 cites W2105642394 @default.
- W4310497343 cites W2153947402 @default.
- W4310497343 cites W2160333357 @default.
- W4310497343 cites W2168952261 @default.
- W4310497343 cites W2315871237 @default.
- W4310497343 cites W2328521964 @default.
- W4310497343 cites W2508732111 @default.
- W4310497343 cites W2523473862 @default.
- W4310497343 cites W2540923435 @default.
- W4310497343 cites W2608691562 @default.
- W4310497343 cites W2760544538 @default.
- W4310497343 cites W2782283892 @default.
- W4310497343 cites W2788490121 @default.
- W4310497343 cites W2799848231 @default.
- W4310497343 cites W2883880894 @default.
- W4310497343 cites W2898312686 @default.
- W4310497343 cites W2900578251 @default.
- W4310497343 cites W2913816108 @default.
- W4310497343 cites W2940511043 @default.
- W4310497343 cites W2945720445 @default.
- W4310497343 cites W2950665317 @default.
- W4310497343 cites W2952918888 @default.
- W4310497343 cites W2969755725 @default.
- W4310497343 cites W2996003281 @default.
- W4310497343 cites W3004487779 @default.
- W4310497343 cites W3034733652 @default.
- W4310497343 cites W3041507818 @default.
- W4310497343 cites W3080096554 @default.
- W4310497343 cites W3088933582 @default.
- W4310497343 cites W3089263119 @default.
- W4310497343 cites W3115445068 @default.
- W4310497343 cites W3119786698 @default.
- W4310497343 cites W3128559770 @default.
- W4310497343 cites W3135642309 @default.
- W4310497343 cites W3154319762 @default.
- W4310497343 cites W3165340512 @default.
- W4310497343 cites W3193827159 @default.
- W4310497343 cites W3207585404 @default.
- W4310497343 cites W3217322600 @default.
- W4310497343 cites W4200071086 @default.
- W4310497343 cites W4200542629 @default.
- W4310497343 cites W4226369822 @default.
- W4310497343 cites W4229332517 @default.
- W4310497343 cites W4248704160 @default.
- W4310497343 cites W4284974258 @default.
- W4310497343 cites W4285585404 @default.
- W4310497343 cites W4296777270 @default.
- W4310497343 doi "https://doi.org/10.1093/g3journal/jkac313" @default.
- W4310497343 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36454213" @default.
- W4310497343 hasPublicationYear "2022" @default.
- W4310497343 type Work @default.
- W4310497343 citedByCount "2" @default.
- W4310497343 countsByYear W43104973432022 @default.
- W4310497343 countsByYear W43104973432023 @default.
- W4310497343 crossrefType "journal-article" @default.
- W4310497343 hasAuthorship W4310497343A5005759008 @default.
- W4310497343 hasAuthorship W4310497343A5006576169 @default.
- W4310497343 hasAuthorship W4310497343A5013298400 @default.
- W4310497343 hasAuthorship W4310497343A5032289984 @default.
- W4310497343 hasAuthorship W4310497343A5037946457 @default.
- W4310497343 hasAuthorship W4310497343A5044237663 @default.
- W4310497343 hasAuthorship W4310497343A5045062917 @default.
- W4310497343 hasAuthorship W4310497343A5049389291 @default.
- W4310497343 hasAuthorship W4310497343A5089922603 @default.
- W4310497343 hasBestOaLocation W43104973431 @default.
- W4310497343 hasConcept C104317684 @default.
- W4310497343 hasConcept C105795698 @default.
- W4310497343 hasConcept C114614502 @default.
- W4310497343 hasConcept C119857082 @default.