Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310502498> ?p ?o ?g. }
- W4310502498 abstract "With the prediction of 145 million electric vehicles on the road by 2030, accommodation of charging needs for these electric vehicles will impose extra challenges to power grid strength. It is imperative to predict charging loads for future infrastructure improvement, including new charging stations' installation to meet the electric vehicles' charging needs and reduce the power grid overload. In this study, deep learning approaches including Artificial Neural Networks, Recursive Neural Networks, and Long-Short Term Memory models are used to predict the charging load with daily and weekly patterns using public datasets. The performances of the deep learning models were compared against the auto-regressive moving average model concerning convergence speed, MSE, RMSE, MAE, and R-squared. The long-short term memory model outperformed all other models concerning the evaluation metrics." @default.
- W4310502498 created "2022-12-11" @default.
- W4310502498 creator A5002899157 @default.
- W4310502498 creator A5022665309 @default.
- W4310502498 creator A5046855484 @default.
- W4310502498 creator A5059911353 @default.
- W4310502498 creator A5063071704 @default.
- W4310502498 creator A5067233599 @default.
- W4310502498 creator A5090905993 @default.
- W4310502498 date "2022-10-09" @default.
- W4310502498 modified "2023-10-06" @default.
- W4310502498 title "Deep Learning Tackles Temporal Predictions on Charging Loads of Electric Vehicles" @default.
- W4310502498 cites W2089574748 @default.
- W4310502498 cites W2119984592 @default.
- W4310502498 cites W2762861296 @default.
- W4310502498 cites W2774966631 @default.
- W4310502498 cites W2949170233 @default.
- W4310502498 cites W3014380129 @default.
- W4310502498 cites W3086833944 @default.
- W4310502498 cites W3092749927 @default.
- W4310502498 cites W3106769307 @default.
- W4310502498 cites W3125531171 @default.
- W4310502498 cites W3155852894 @default.
- W4310502498 cites W3170662142 @default.
- W4310502498 cites W3189940786 @default.
- W4310502498 cites W3194849262 @default.
- W4310502498 doi "https://doi.org/10.1109/ecce50734.2022.9947901" @default.
- W4310502498 hasPublicationYear "2022" @default.
- W4310502498 type Work @default.
- W4310502498 citedByCount "0" @default.
- W4310502498 crossrefType "proceedings-article" @default.
- W4310502498 hasAuthorship W4310502498A5002899157 @default.
- W4310502498 hasAuthorship W4310502498A5022665309 @default.
- W4310502498 hasAuthorship W4310502498A5046855484 @default.
- W4310502498 hasAuthorship W4310502498A5059911353 @default.
- W4310502498 hasAuthorship W4310502498A5063071704 @default.
- W4310502498 hasAuthorship W4310502498A5067233599 @default.
- W4310502498 hasAuthorship W4310502498A5090905993 @default.
- W4310502498 hasConcept C105795698 @default.
- W4310502498 hasConcept C108583219 @default.
- W4310502498 hasConcept C119599485 @default.
- W4310502498 hasConcept C121332964 @default.
- W4310502498 hasConcept C127413603 @default.
- W4310502498 hasConcept C139945424 @default.
- W4310502498 hasConcept C154945302 @default.
- W4310502498 hasConcept C157660682 @default.
- W4310502498 hasConcept C162324750 @default.
- W4310502498 hasConcept C163258240 @default.
- W4310502498 hasConcept C165801399 @default.
- W4310502498 hasConcept C169760540 @default.
- W4310502498 hasConcept C171146098 @default.
- W4310502498 hasConcept C187691185 @default.
- W4310502498 hasConcept C2524010 @default.
- W4310502498 hasConcept C2777303404 @default.
- W4310502498 hasConcept C2983254600 @default.
- W4310502498 hasConcept C33923547 @default.
- W4310502498 hasConcept C41008148 @default.
- W4310502498 hasConcept C44154836 @default.
- W4310502498 hasConcept C50522688 @default.
- W4310502498 hasConcept C50644808 @default.
- W4310502498 hasConcept C62520636 @default.
- W4310502498 hasConcept C77715397 @default.
- W4310502498 hasConcept C86803240 @default.
- W4310502498 hasConceptScore W4310502498C105795698 @default.
- W4310502498 hasConceptScore W4310502498C108583219 @default.
- W4310502498 hasConceptScore W4310502498C119599485 @default.
- W4310502498 hasConceptScore W4310502498C121332964 @default.
- W4310502498 hasConceptScore W4310502498C127413603 @default.
- W4310502498 hasConceptScore W4310502498C139945424 @default.
- W4310502498 hasConceptScore W4310502498C154945302 @default.
- W4310502498 hasConceptScore W4310502498C157660682 @default.
- W4310502498 hasConceptScore W4310502498C162324750 @default.
- W4310502498 hasConceptScore W4310502498C163258240 @default.
- W4310502498 hasConceptScore W4310502498C165801399 @default.
- W4310502498 hasConceptScore W4310502498C169760540 @default.
- W4310502498 hasConceptScore W4310502498C171146098 @default.
- W4310502498 hasConceptScore W4310502498C187691185 @default.
- W4310502498 hasConceptScore W4310502498C2524010 @default.
- W4310502498 hasConceptScore W4310502498C2777303404 @default.
- W4310502498 hasConceptScore W4310502498C2983254600 @default.
- W4310502498 hasConceptScore W4310502498C33923547 @default.
- W4310502498 hasConceptScore W4310502498C41008148 @default.
- W4310502498 hasConceptScore W4310502498C44154836 @default.
- W4310502498 hasConceptScore W4310502498C50522688 @default.
- W4310502498 hasConceptScore W4310502498C50644808 @default.
- W4310502498 hasConceptScore W4310502498C62520636 @default.
- W4310502498 hasConceptScore W4310502498C77715397 @default.
- W4310502498 hasConceptScore W4310502498C86803240 @default.
- W4310502498 hasLocation W43105024981 @default.
- W4310502498 hasOpenAccess W4310502498 @default.
- W4310502498 hasPrimaryLocation W43105024981 @default.
- W4310502498 hasRelatedWork W2082308697 @default.
- W4310502498 hasRelatedWork W2731899572 @default.
- W4310502498 hasRelatedWork W2995227436 @default.
- W4310502498 hasRelatedWork W3017094922 @default.
- W4310502498 hasRelatedWork W3116272949 @default.
- W4310502498 hasRelatedWork W3123040016 @default.
- W4310502498 hasRelatedWork W3168139865 @default.
- W4310502498 hasRelatedWork W3187242807 @default.
- W4310502498 hasRelatedWork W4324119492 @default.