Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310502561> ?p ?o ?g. }
- W4310502561 abstract "Abstract Early yield information of perennial crops is crucial for growers and the industry, which allows cost reduction and benefits crop planning. However, the yield assessment of perennial crops by computational models can be challenging due to diverse aspects of interannual variability that act on the crops. This review aimed to investigate and analyze the literature on yield estimation and forecasting modeling of perennial cropping systems. We reviewed 49 articles and categorized them according to their yield assessment strategy, modeling class used, and input variable characteristics. The strategies of yield assessment were discussed in the context of their principal improvement challenges. According to our investigation, image processing and deep learning models are emerging techniques for yield estimation. On the other hand, machine learning algorithms, such as Artificial Neural Networks and Decision Trees, were applied to yield forecasting with reasonable time in advance of harvest. Emphasis is placed on the lack of representative long-term datasets for developing computational models, which can lead to accurate early yield forecasting of perennial crops." @default.
- W4310502561 created "2022-12-11" @default.
- W4310502561 creator A5003630820 @default.
- W4310502561 creator A5051352695 @default.
- W4310502561 creator A5069934308 @default.
- W4310502561 date "2022-12-01" @default.
- W4310502561 modified "2023-10-14" @default.
- W4310502561 title "Computational models in Precision Fruit Growing: reviewing the impact of temporal variability on perennial crop yield assessment" @default.
- W4310502561 cites W138562417 @default.
- W4310502561 cites W1496279036 @default.
- W4310502561 cites W1575468971 @default.
- W4310502561 cites W1600185470 @default.
- W4310502561 cites W1607148716 @default.
- W4310502561 cites W1801125600 @default.
- W4310502561 cites W1971087410 @default.
- W4310502561 cites W1980180011 @default.
- W4310502561 cites W1980623462 @default.
- W4310502561 cites W1987964015 @default.
- W4310502561 cites W1991605932 @default.
- W4310502561 cites W1996756203 @default.
- W4310502561 cites W1999309794 @default.
- W4310502561 cites W2020744731 @default.
- W4310502561 cites W2030923739 @default.
- W4310502561 cites W2032857708 @default.
- W4310502561 cites W2037018757 @default.
- W4310502561 cites W2049205358 @default.
- W4310502561 cites W2056331826 @default.
- W4310502561 cites W2072965785 @default.
- W4310502561 cites W2104617538 @default.
- W4310502561 cites W2110711012 @default.
- W4310502561 cites W2116868029 @default.
- W4310502561 cites W2118023920 @default.
- W4310502561 cites W2160336621 @default.
- W4310502561 cites W2182171353 @default.
- W4310502561 cites W2185641159 @default.
- W4310502561 cites W2251166296 @default.
- W4310502561 cites W2317382486 @default.
- W4310502561 cites W2465471019 @default.
- W4310502561 cites W2572262262 @default.
- W4310502561 cites W2574697919 @default.
- W4310502561 cites W2625680238 @default.
- W4310502561 cites W2768210762 @default.
- W4310502561 cites W2792921304 @default.
- W4310502561 cites W2793639264 @default.
- W4310502561 cites W2803321692 @default.
- W4310502561 cites W2805142011 @default.
- W4310502561 cites W2809985736 @default.
- W4310502561 cites W2898543370 @default.
- W4310502561 cites W2900840130 @default.
- W4310502561 cites W2902658278 @default.
- W4310502561 cites W2909494862 @default.
- W4310502561 cites W2947309173 @default.
- W4310502561 cites W2953473428 @default.
- W4310502561 cites W2959197972 @default.
- W4310502561 cites W2968020605 @default.
- W4310502561 cites W2990295224 @default.
- W4310502561 cites W3001393281 @default.
- W4310502561 cites W3009650835 @default.
- W4310502561 cites W3011663460 @default.
- W4310502561 cites W3022760892 @default.
- W4310502561 cites W3087070249 @default.
- W4310502561 cites W3100505226 @default.
- W4310502561 cites W3131745224 @default.
- W4310502561 cites W3134816142 @default.
- W4310502561 cites W3169009440 @default.
- W4310502561 cites W3178959444 @default.
- W4310502561 cites W3192081481 @default.
- W4310502561 cites W3210621985 @default.
- W4310502561 cites W4205974971 @default.
- W4310502561 cites W4210631683 @default.
- W4310502561 cites W4214577775 @default.
- W4310502561 cites W4220924931 @default.
- W4310502561 cites W4252568754 @default.
- W4310502561 cites W4255849575 @default.
- W4310502561 doi "https://doi.org/10.21203/rs.3.rs-2333487/v1" @default.
- W4310502561 hasPublicationYear "2022" @default.
- W4310502561 type Work @default.
- W4310502561 citedByCount "0" @default.
- W4310502561 crossrefType "posted-content" @default.
- W4310502561 hasAuthorship W4310502561A5003630820 @default.
- W4310502561 hasAuthorship W4310502561A5051352695 @default.
- W4310502561 hasAuthorship W4310502561A5069934308 @default.
- W4310502561 hasBestOaLocation W43105025611 @default.
- W4310502561 hasConcept C111919701 @default.
- W4310502561 hasConcept C118518473 @default.
- W4310502561 hasConcept C119857082 @default.
- W4310502561 hasConcept C126343540 @default.
- W4310502561 hasConcept C127413603 @default.
- W4310502561 hasConcept C134121241 @default.
- W4310502561 hasConcept C134306372 @default.
- W4310502561 hasConcept C13558536 @default.
- W4310502561 hasConcept C144559511 @default.
- W4310502561 hasConcept C154945302 @default.
- W4310502561 hasConcept C166957645 @default.
- W4310502561 hasConcept C182365436 @default.
- W4310502561 hasConcept C191897082 @default.
- W4310502561 hasConcept C192562407 @default.
- W4310502561 hasConcept C205649164 @default.
- W4310502561 hasConcept C24461792 @default.
- W4310502561 hasConcept C2779343474 @default.