Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310506596> ?p ?o ?g. }
- W4310506596 endingPage "e0278493" @default.
- W4310506596 startingPage "e0278493" @default.
- W4310506596 abstract "Due to the huge number of connected Internet of Things (IoT) devices within a network, denial of service and flooding attacks on networks are on the rise. IoT devices are disrupted and denied service because of these attacks. In this study, we proposed a novel hybrid meta-heuristic adaptive particle swarm optimization-whale optimizer algorithm (APSO-WOA) for optimization of the hyperparameters of a convolutional neural network (APSO-WOA-CNN). The APSO-WOA optimization algorithm's fitness value is defined as the validation set's cross-entropy loss function during CNN model training. In this study, we compare our optimization algorithm with other optimization algorithms, such as the APSO algorithm, for optimization of the hyperparameters of CNN. In model training, the APSO-WOA-CNN algorithm achieved the best performance compared to the FNN algorithm, which used manual parameter settings. We evaluated the APSO-WOA-CNN algorithm against APSO-CNN, SVM, and FNN. The simulation results suggest that APSO-WOA-CNf[N is effective and can reliably detect multi-type IoT network attacks. The results show that the APSO-WOA-CNN algorithm improves accuracy by 1.25%, average precision by 1%, the kappa coefficient by 11%, Hamming loss by 1.2%, and the Jaccard similarity coefficient by 2%, as compared to the APSO-CNN algorithm, and the APSO-CNN algorithm achieves the best performance, as compared to other algorithms." @default.
- W4310506596 created "2022-12-11" @default.
- W4310506596 creator A5004734265 @default.
- W4310506596 creator A5024701185 @default.
- W4310506596 creator A5066145645 @default.
- W4310506596 creator A5078760768 @default.
- W4310506596 date "2022-12-01" @default.
- W4310506596 modified "2023-09-26" @default.
- W4310506596 title "A novel hybrid optimization enabled robust CNN algorithm for an IoT network intrusion detection approach" @default.
- W4310506596 cites W2109364787 @default.
- W4310506596 cites W2290883490 @default.
- W4310506596 cites W2797283471 @default.
- W4310506596 cites W2883690386 @default.
- W4310506596 cites W2884166952 @default.
- W4310506596 cites W2911543579 @default.
- W4310506596 cites W2994866269 @default.
- W4310506596 cites W3019747105 @default.
- W4310506596 cites W3048668222 @default.
- W4310506596 cites W3049032410 @default.
- W4310506596 cites W3049204557 @default.
- W4310506596 cites W3108589888 @default.
- W4310506596 cites W3120466166 @default.
- W4310506596 cites W3122864121 @default.
- W4310506596 cites W3131991398 @default.
- W4310506596 cites W3135109179 @default.
- W4310506596 cites W3150051937 @default.
- W4310506596 cites W3151784567 @default.
- W4310506596 cites W3162231749 @default.
- W4310506596 cites W3164964481 @default.
- W4310506596 cites W3164987805 @default.
- W4310506596 cites W3167793662 @default.
- W4310506596 cites W3171908901 @default.
- W4310506596 cites W3184813631 @default.
- W4310506596 cites W3185153723 @default.
- W4310506596 cites W3192519096 @default.
- W4310506596 cites W3199053546 @default.
- W4310506596 cites W3199173122 @default.
- W4310506596 cites W3203574068 @default.
- W4310506596 cites W3209227865 @default.
- W4310506596 cites W3211543915 @default.
- W4310506596 cites W3213644780 @default.
- W4310506596 cites W3214529927 @default.
- W4310506596 cites W3216106071 @default.
- W4310506596 cites W3216448103 @default.
- W4310506596 cites W3217748719 @default.
- W4310506596 cites W4200409353 @default.
- W4310506596 cites W4200436126 @default.
- W4310506596 cites W4205132420 @default.
- W4310506596 cites W4205581135 @default.
- W4310506596 cites W4205599972 @default.
- W4310506596 cites W4206526354 @default.
- W4310506596 cites W4210493845 @default.
- W4310506596 cites W4210830905 @default.
- W4310506596 cites W4211244664 @default.
- W4310506596 cites W4214752923 @default.
- W4310506596 cites W4220656594 @default.
- W4310506596 cites W4220892690 @default.
- W4310506596 cites W4223453348 @default.
- W4310506596 cites W4224082003 @default.
- W4310506596 cites W4240203809 @default.
- W4310506596 cites W4280570265 @default.
- W4310506596 cites W4280638404 @default.
- W4310506596 cites W4283214530 @default.
- W4310506596 cites W4285392382 @default.
- W4310506596 cites W4286223320 @default.
- W4310506596 cites W4286373821 @default.
- W4310506596 cites W4289175723 @default.
- W4310506596 cites W4289529959 @default.
- W4310506596 cites W4292258984 @default.
- W4310506596 cites W4293065833 @default.
- W4310506596 cites W4293193114 @default.
- W4310506596 cites W4293221722 @default.
- W4310506596 cites W4296179092 @default.
- W4310506596 cites W4297198361 @default.
- W4310506596 cites W4306673449 @default.
- W4310506596 doi "https://doi.org/10.1371/journal.pone.0278493" @default.
- W4310506596 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36454861" @default.
- W4310506596 hasPublicationYear "2022" @default.
- W4310506596 type Work @default.
- W4310506596 citedByCount "3" @default.
- W4310506596 countsByYear W43105065962023 @default.
- W4310506596 crossrefType "journal-article" @default.
- W4310506596 hasAuthorship W4310506596A5004734265 @default.
- W4310506596 hasAuthorship W4310506596A5024701185 @default.
- W4310506596 hasAuthorship W4310506596A5066145645 @default.
- W4310506596 hasAuthorship W4310506596A5078760768 @default.
- W4310506596 hasBestOaLocation W43105065961 @default.
- W4310506596 hasConcept C110875604 @default.
- W4310506596 hasConcept C11413529 @default.
- W4310506596 hasConcept C136764020 @default.
- W4310506596 hasConcept C153180895 @default.
- W4310506596 hasConcept C154945302 @default.
- W4310506596 hasConcept C203519979 @default.
- W4310506596 hasConcept C38822068 @default.
- W4310506596 hasConcept C41008148 @default.
- W4310506596 hasConcept C81363708 @default.
- W4310506596 hasConcept C85617194 @default.
- W4310506596 hasConcept C8642999 @default.