Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310534179> ?p ?o ?g. }
- W4310534179 endingPage "16064" @default.
- W4310534179 startingPage "16064" @default.
- W4310534179 abstract "The road transportation sector in Saudi Arabia has been observing a surging growth of demand trends for the last couple of decades. The main objective of this article is to extract insightful information for the country’s policymakers through a comprehensive investigation of the rising energy trends. In the first phase, it employs econometric analysis to provide the causal relationship between the energy demand of the road transportation sector and different socio-economic elements, including the gross domestic product (GDP), number of registered vehicles, total population, the population in the urban agglomeration, and fuel price. Then, it estimates future energy demand for the sector using two machine-learning models, i.e., artificial neural network (ANN) and support vector regression (SVR). The core features of the future demand model include: (i) removal of the linear trend, (ii) input data projection using a double exponential smoothing technique, and (iii) energy demand prediction using the machine learning models. The findings of the study show that the GDP and urban population have a significant causal relationship with energy demand in the road transportation sector in both the short and long run. The greenhouse gas emissions from the road transportation in Saudi Arabia are directly proportional to energy consumption because the demand is solely met by fossil fuels. Therefore, appropriate policy measures should be taken to reduce energy intensity without compromising the country’s development. In addition, the SVR model outperformed the ANN model in predicting the future energy demand of the sector based on the achieved performance indices. For instance, the correlation coefficients of the SVR and the ANN models were 0.8932 and 0.9925, respectively, for the test datasets. The results show that the SVR is better for predicting energy consumption than the ANN. It is expected that the findings of the study will assist the decision-makers of the country in achieving environmental sustainability goals by initiating appropriate policies." @default.
- W4310534179 created "2022-12-11" @default.
- W4310534179 creator A5000805687 @default.
- W4310534179 creator A5008621920 @default.
- W4310534179 creator A5012563260 @default.
- W4310534179 creator A5018205289 @default.
- W4310534179 creator A5018572301 @default.
- W4310534179 creator A5032359229 @default.
- W4310534179 creator A5034710733 @default.
- W4310534179 creator A5035285842 @default.
- W4310534179 creator A5041859607 @default.
- W4310534179 creator A5048863880 @default.
- W4310534179 creator A5066092791 @default.
- W4310534179 creator A5075386163 @default.
- W4310534179 date "2022-12-01" @default.
- W4310534179 modified "2023-10-01" @default.
- W4310534179 title "Energy Demand of the Road Transport Sector of Saudi Arabia—Application of a Causality-Based Machine Learning Model to Ensure Sustainable Environment" @default.
- W4310534179 cites W1028349298 @default.
- W4310534179 cites W1587141723 @default.
- W4310534179 cites W1810285639 @default.
- W4310534179 cites W1964357740 @default.
- W4310534179 cites W1976899172 @default.
- W4310534179 cites W1976975339 @default.
- W4310534179 cites W1982857411 @default.
- W4310534179 cites W1987696529 @default.
- W4310534179 cites W1989115171 @default.
- W4310534179 cites W1989783051 @default.
- W4310534179 cites W2005248934 @default.
- W4310534179 cites W2006723595 @default.
- W4310534179 cites W2009828442 @default.
- W4310534179 cites W2019316090 @default.
- W4310534179 cites W2026422512 @default.
- W4310534179 cites W2032654523 @default.
- W4310534179 cites W2035737123 @default.
- W4310534179 cites W2046412573 @default.
- W4310534179 cites W2046854739 @default.
- W4310534179 cites W2049628922 @default.
- W4310534179 cites W2051502925 @default.
- W4310534179 cites W2056079077 @default.
- W4310534179 cites W2057878745 @default.
- W4310534179 cites W2059410869 @default.
- W4310534179 cites W2063375660 @default.
- W4310534179 cites W2064469609 @default.
- W4310534179 cites W2077116645 @default.
- W4310534179 cites W2078068039 @default.
- W4310534179 cites W2087347434 @default.
- W4310534179 cites W2091512155 @default.
- W4310534179 cites W2092315180 @default.
- W4310534179 cites W2092547719 @default.
- W4310534179 cites W2108625008 @default.
- W4310534179 cites W2109078979 @default.
- W4310534179 cites W2111286455 @default.
- W4310534179 cites W2139212933 @default.
- W4310534179 cites W2141041164 @default.
- W4310534179 cites W2141356336 @default.
- W4310534179 cites W2142377810 @default.
- W4310534179 cites W2148061495 @default.
- W4310534179 cites W2154512226 @default.
- W4310534179 cites W2155701161 @default.
- W4310534179 cites W2155841743 @default.
- W4310534179 cites W2156909104 @default.
- W4310534179 cites W2164709595 @default.
- W4310534179 cites W2169187198 @default.
- W4310534179 cites W2224494198 @default.
- W4310534179 cites W2515619376 @default.
- W4310534179 cites W2554102260 @default.
- W4310534179 cites W2555313580 @default.
- W4310534179 cites W2767892806 @default.
- W4310534179 cites W2797563651 @default.
- W4310534179 cites W2951454429 @default.
- W4310534179 cites W2966296985 @default.
- W4310534179 cites W2966676650 @default.
- W4310534179 cites W2991446667 @default.
- W4310534179 cites W3120531297 @default.
- W4310534179 cites W3132031668 @default.
- W4310534179 cites W3136230508 @default.
- W4310534179 cites W3157145891 @default.
- W4310534179 cites W3194855731 @default.
- W4310534179 cites W3195896811 @default.
- W4310534179 cites W4205929678 @default.
- W4310534179 cites W4206428663 @default.
- W4310534179 cites W4210522694 @default.
- W4310534179 cites W4221030382 @default.
- W4310534179 cites W4226292202 @default.
- W4310534179 cites W4229442750 @default.
- W4310534179 cites W4239510810 @default.
- W4310534179 cites W4281254676 @default.
- W4310534179 cites W4285105741 @default.
- W4310534179 cites W4285587037 @default.
- W4310534179 cites W4293523040 @default.
- W4310534179 cites W4304172323 @default.
- W4310534179 doi "https://doi.org/10.3390/su142316064" @default.
- W4310534179 hasPublicationYear "2022" @default.
- W4310534179 type Work @default.
- W4310534179 citedByCount "3" @default.
- W4310534179 countsByYear W43105341792023 @default.
- W4310534179 crossrefType "journal-article" @default.
- W4310534179 hasAuthorship W4310534179A5000805687 @default.