Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310540160> ?p ?o ?g. }
- W4310540160 endingPage "1900" @default.
- W4310540160 startingPage "1887" @default.
- W4310540160 abstract "Abstract The data-driven methods extract the feature information from data to build system models, which enable estimation and identification of the systems and can be utilized for prognosis and health management (PHM). However, most data-driven models are still black-box models that cannot be interpreted. In this study, we use the neural ordinary differential equations (ODEs), especially the inherent computational relationships of a system added to the loss function calculation, to approximate the governing equations. In addition, a new strategy for identifying the local parameters of the system is investigated, which can be utilized for system parameter identification and damage detection. The numerical and experimental examples presented in the paper demonstrate that the strategy has high accuracy and good local parameter identification. Moreover, the proposed method has the advantage of being interpretable. It can directly approximate the underlying governing dynamics and be a worthwhile strategy for system identification and PHM." @default.
- W4310540160 created "2022-12-11" @default.
- W4310540160 creator A5016702303 @default.
- W4310540160 creator A5018352471 @default.
- W4310540160 creator A5020376006 @default.
- W4310540160 creator A5080264682 @default.
- W4310540160 date "2022-12-01" @default.
- W4310540160 modified "2023-10-14" @default.
- W4310540160 title "Local parameter identification with neural ordinary differential equations" @default.
- W4310540160 cites W1972125873 @default.
- W4310540160 cites W1973665104 @default.
- W4310540160 cites W2000982976 @default.
- W4310540160 cites W2055738215 @default.
- W4310540160 cites W2084909754 @default.
- W4310540160 cites W2090578011 @default.
- W4310540160 cites W2143585755 @default.
- W4310540160 cites W2169273805 @default.
- W4310540160 cites W2239232218 @default.
- W4310540160 cites W2525748878 @default.
- W4310540160 cites W2564216145 @default.
- W4310540160 cites W2745110207 @default.
- W4310540160 cites W2790565135 @default.
- W4310540160 cites W2793004187 @default.
- W4310540160 cites W2808622270 @default.
- W4310540160 cites W2810292802 @default.
- W4310540160 cites W2892393161 @default.
- W4310540160 cites W2899283552 @default.
- W4310540160 cites W2904868475 @default.
- W4310540160 cites W2919958648 @default.
- W4310540160 cites W2943154646 @default.
- W4310540160 cites W2951629468 @default.
- W4310540160 cites W2965147845 @default.
- W4310540160 cites W2982073446 @default.
- W4310540160 cites W2987147016 @default.
- W4310540160 cites W2994902374 @default.
- W4310540160 cites W2996117967 @default.
- W4310540160 cites W2998506103 @default.
- W4310540160 cites W3003922491 @default.
- W4310540160 cites W3021048621 @default.
- W4310540160 cites W3022953487 @default.
- W4310540160 cites W3029029935 @default.
- W4310540160 cites W3033014319 @default.
- W4310540160 cites W3041682155 @default.
- W4310540160 cites W3042354547 @default.
- W4310540160 cites W3048778144 @default.
- W4310540160 cites W3066823240 @default.
- W4310540160 cites W3113866719 @default.
- W4310540160 cites W3162045419 @default.
- W4310540160 cites W3163993681 @default.
- W4310540160 cites W3165802365 @default.
- W4310540160 cites W4293583890 @default.
- W4310540160 doi "https://doi.org/10.1007/s10483-022-2926-9" @default.
- W4310540160 hasPublicationYear "2022" @default.
- W4310540160 type Work @default.
- W4310540160 citedByCount "1" @default.
- W4310540160 countsByYear W43105401602023 @default.
- W4310540160 crossrefType "journal-article" @default.
- W4310540160 hasAuthorship W4310540160A5016702303 @default.
- W4310540160 hasAuthorship W4310540160A5018352471 @default.
- W4310540160 hasAuthorship W4310540160A5020376006 @default.
- W4310540160 hasAuthorship W4310540160A5080264682 @default.
- W4310540160 hasBestOaLocation W43105401601 @default.
- W4310540160 hasConcept C11413529 @default.
- W4310540160 hasConcept C116834253 @default.
- W4310540160 hasConcept C119247159 @default.
- W4310540160 hasConcept C119857082 @default.
- W4310540160 hasConcept C124101348 @default.
- W4310540160 hasConcept C126255220 @default.
- W4310540160 hasConcept C134306372 @default.
- W4310540160 hasConcept C138885662 @default.
- W4310540160 hasConcept C14036430 @default.
- W4310540160 hasConcept C154945302 @default.
- W4310540160 hasConcept C167928553 @default.
- W4310540160 hasConcept C2776401178 @default.
- W4310540160 hasConcept C2780009758 @default.
- W4310540160 hasConcept C28826006 @default.
- W4310540160 hasConcept C2983447341 @default.
- W4310540160 hasConcept C33923547 @default.
- W4310540160 hasConcept C34862557 @default.
- W4310540160 hasConcept C41008148 @default.
- W4310540160 hasConcept C41895202 @default.
- W4310540160 hasConcept C50644808 @default.
- W4310540160 hasConcept C51544822 @default.
- W4310540160 hasConcept C59822182 @default.
- W4310540160 hasConcept C78045399 @default.
- W4310540160 hasConcept C78458016 @default.
- W4310540160 hasConcept C79610928 @default.
- W4310540160 hasConcept C86803240 @default.
- W4310540160 hasConcept C94966114 @default.
- W4310540160 hasConceptScore W4310540160C11413529 @default.
- W4310540160 hasConceptScore W4310540160C116834253 @default.
- W4310540160 hasConceptScore W4310540160C119247159 @default.
- W4310540160 hasConceptScore W4310540160C119857082 @default.
- W4310540160 hasConceptScore W4310540160C124101348 @default.
- W4310540160 hasConceptScore W4310540160C126255220 @default.
- W4310540160 hasConceptScore W4310540160C134306372 @default.
- W4310540160 hasConceptScore W4310540160C138885662 @default.
- W4310540160 hasConceptScore W4310540160C14036430 @default.