Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310543463> ?p ?o ?g. }
- W4310543463 endingPage "194" @default.
- W4310543463 startingPage "163" @default.
- W4310543463 abstract "AbstractHealthcare digitization offers a variety of chances for minimizing human error rates, enhancing clinical results, monitoring data over time, etc. Machine learning and deep learning AI techniques play a key role in enhancing new healthcare systems, patient information and records, and the treatment of various ailments, among other health-related topics. The utilization of conventional sensor systems to decipher the environment is changing as another time for “smart” sensor frameworks arises. To create refined “brilliant” models that are custom fitted explicitly for detecting applications and melding different detecting modalities to acquire a more comprehensive understanding of the framework being observed, savvy sensor frameworks enjoy taken benefit of conventional and state-of-the-art machine learning calculations as well as contemporary PC equipment. Here is a chapter of current developments in biosensors used in healthcare that are reinforced by machine learning. First, several biosensor types are classified and a summary of the physiological data they have collected is provided. The introduction of machine learning techniques used in subsequent data processing is followed by a discussion of their usefulness in biosensors. And last, the possibilities for machine learning-enhanced biosensors in real-time monitoring, outside-the-clinic diagnostics, and on-site food safety detection are suggested. These problems include data privacy and adaptive learning capabilities.KeywordsArtificial Intelligence (AI)Machine Learning (ML)BiosensorClinical decision makingPoint-of-care" @default.
- W4310543463 created "2022-12-11" @default.
- W4310543463 creator A5035405996 @default.
- W4310543463 creator A5047776126 @default.
- W4310543463 creator A5086488331 @default.
- W4310543463 date "2022-12-03" @default.
- W4310543463 modified "2023-10-14" @default.
- W4310543463 title "Machine Learning-Enabled Biosensors in Clinical Decision Making" @default.
- W4310543463 cites W1637548909 @default.
- W4310543463 cites W1926118539 @default.
- W4310543463 cites W1973200056 @default.
- W4310543463 cites W2000414465 @default.
- W4310543463 cites W2002454301 @default.
- W4310543463 cites W2003878875 @default.
- W4310543463 cites W2007262823 @default.
- W4310543463 cites W2013640190 @default.
- W4310543463 cites W2048697945 @default.
- W4310543463 cites W2064675550 @default.
- W4310543463 cites W2074651755 @default.
- W4310543463 cites W2082302018 @default.
- W4310543463 cites W2092198587 @default.
- W4310543463 cites W2092459136 @default.
- W4310543463 cites W2096200085 @default.
- W4310543463 cites W2097117768 @default.
- W4310543463 cites W2112796928 @default.
- W4310543463 cites W2134262590 @default.
- W4310543463 cites W2154466813 @default.
- W4310543463 cites W2159128662 @default.
- W4310543463 cites W2258351451 @default.
- W4310543463 cites W2270470215 @default.
- W4310543463 cites W2272836392 @default.
- W4310543463 cites W2276495423 @default.
- W4310543463 cites W2286922890 @default.
- W4310543463 cites W2294798173 @default.
- W4310543463 cites W2310992461 @default.
- W4310543463 cites W2317495605 @default.
- W4310543463 cites W2322371438 @default.
- W4310543463 cites W2338271170 @default.
- W4310543463 cites W2343000757 @default.
- W4310543463 cites W2399675776 @default.
- W4310543463 cites W2402865653 @default.
- W4310543463 cites W2463777919 @default.
- W4310543463 cites W2467534105 @default.
- W4310543463 cites W2548779750 @default.
- W4310543463 cites W2551794004 @default.
- W4310543463 cites W2564339002 @default.
- W4310543463 cites W2566370974 @default.
- W4310543463 cites W2567651249 @default.
- W4310543463 cites W2583588017 @default.
- W4310543463 cites W2584792247 @default.
- W4310543463 cites W2586821431 @default.
- W4310543463 cites W2608999297 @default.
- W4310543463 cites W2618530766 @default.
- W4310543463 cites W2741056065 @default.
- W4310543463 cites W2742217896 @default.
- W4310543463 cites W2751279150 @default.
- W4310543463 cites W2752532133 @default.
- W4310543463 cites W2753024880 @default.
- W4310543463 cites W2760653529 @default.
- W4310543463 cites W2765538626 @default.
- W4310543463 cites W2772905275 @default.
- W4310543463 cites W2775616629 @default.
- W4310543463 cites W2786517672 @default.
- W4310543463 cites W2792318242 @default.
- W4310543463 cites W2793005153 @default.
- W4310543463 cites W2802312003 @default.
- W4310543463 cites W2809187403 @default.
- W4310543463 cites W2843242420 @default.
- W4310543463 cites W2886375494 @default.
- W4310543463 cites W2886783312 @default.
- W4310543463 cites W2887536367 @default.
- W4310543463 cites W2891888256 @default.
- W4310543463 cites W2892921408 @default.
- W4310543463 cites W2894395376 @default.
- W4310543463 cites W2896266035 @default.
- W4310543463 cites W2900516065 @default.
- W4310543463 cites W2903402350 @default.
- W4310543463 cites W2906426977 @default.
- W4310543463 cites W2908201961 @default.
- W4310543463 cites W2909559065 @default.
- W4310543463 cites W2917496550 @default.
- W4310543463 cites W2919115771 @default.
- W4310543463 cites W2922193148 @default.
- W4310543463 cites W2922280123 @default.
- W4310543463 cites W2945274617 @default.
- W4310543463 cites W2946381164 @default.
- W4310543463 cites W2948863695 @default.
- W4310543463 cites W2951960076 @default.
- W4310543463 cites W2952266823 @default.
- W4310543463 cites W2953471508 @default.
- W4310543463 cites W2956635660 @default.
- W4310543463 cites W2957366757 @default.
- W4310543463 cites W2964199361 @default.
- W4310543463 cites W2964929523 @default.
- W4310543463 cites W2969674033 @default.
- W4310543463 cites W2971528197 @default.
- W4310543463 cites W2981923677 @default.
- W4310543463 cites W2982482221 @default.