Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310548084> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4310548084 abstract "The demand for Deep Learning applications in resource constrained devices is booming in recent years. Theuse of Deep Neural Network (DNN) is the leading method in these applications which has error resilient nature.This allows the use of Approximate Computing for efficient computation to leverage efficiency accuracy tradeoff by replacing Approximate Multiplier in place of exact multipliers. In this paper we proposed ApproximateCompressors and compared them in different cases of 8 bit integer dadda multipliers in terms of the Error metricsand accuracy in real life object classification applications. The approximate multipliers are designed using differentcompressors and used to perform multiplication in ResNet. We have proposed two approximate compressorsdesigns Design 1 and Design 2.The proposed 4:2 compressors design shows the more correct outputs and lessWorst Case Relative Error (WCRE) in the range of 2-16. Our proposed 4:2 compressor Design1 is utilized in themodified Reduction circuitry of dadda multiplier and shows the accuracy of 81.6 % for DNN application" @default.
- W4310548084 created "2022-12-12" @default.
- W4310548084 creator A5045930391 @default.
- W4310548084 creator A5051248888 @default.
- W4310548084 creator A5061448962 @default.
- W4310548084 creator A5069000566 @default.
- W4310548084 date "2022-11-26" @default.
- W4310548084 modified "2023-09-26" @default.
- W4310548084 title "Design and Analysis of Multipliers for DNN application using approximate 4:2 Compressors" @default.
- W4310548084 cites W2112796928 @default.
- W4310548084 cites W2124651102 @default.
- W4310548084 cites W2130834086 @default.
- W4310548084 cites W2585698031 @default.
- W4310548084 cites W2604319603 @default.
- W4310548084 cites W2618530766 @default.
- W4310548084 cites W2946066476 @default.
- W4310548084 cites W2980235527 @default.
- W4310548084 cites W3101943602 @default.
- W4310548084 cites W4200437619 @default.
- W4310548084 cites W4224992966 @default.
- W4310548084 cites W4280505674 @default.
- W4310548084 cites W4285900176 @default.
- W4310548084 cites W4288069269 @default.
- W4310548084 cites W4295122555 @default.
- W4310548084 doi "https://doi.org/10.47164/ijngc.v13i5.918" @default.
- W4310548084 hasPublicationYear "2022" @default.
- W4310548084 type Work @default.
- W4310548084 citedByCount "0" @default.
- W4310548084 crossrefType "journal-article" @default.
- W4310548084 hasAuthorship W4310548084A5045930391 @default.
- W4310548084 hasAuthorship W4310548084A5051248888 @default.
- W4310548084 hasAuthorship W4310548084A5061448962 @default.
- W4310548084 hasAuthorship W4310548084A5069000566 @default.
- W4310548084 hasBestOaLocation W43105480841 @default.
- W4310548084 hasConcept C113775141 @default.
- W4310548084 hasConcept C11413529 @default.
- W4310548084 hasConcept C114614502 @default.
- W4310548084 hasConcept C122383733 @default.
- W4310548084 hasConcept C124584101 @default.
- W4310548084 hasConcept C126255220 @default.
- W4310548084 hasConcept C127413603 @default.
- W4310548084 hasConcept C131097465 @default.
- W4310548084 hasConcept C139719470 @default.
- W4310548084 hasConcept C153083717 @default.
- W4310548084 hasConcept C154945302 @default.
- W4310548084 hasConcept C162324750 @default.
- W4310548084 hasConcept C164620267 @default.
- W4310548084 hasConcept C2780595030 @default.
- W4310548084 hasConcept C2780971903 @default.
- W4310548084 hasConcept C33923547 @default.
- W4310548084 hasConcept C41008148 @default.
- W4310548084 hasConcept C45374587 @default.
- W4310548084 hasConcept C50644808 @default.
- W4310548084 hasConcept C76155785 @default.
- W4310548084 hasConcept C78519656 @default.
- W4310548084 hasConcept C82876162 @default.
- W4310548084 hasConcept C94375191 @default.
- W4310548084 hasConceptScore W4310548084C113775141 @default.
- W4310548084 hasConceptScore W4310548084C11413529 @default.
- W4310548084 hasConceptScore W4310548084C114614502 @default.
- W4310548084 hasConceptScore W4310548084C122383733 @default.
- W4310548084 hasConceptScore W4310548084C124584101 @default.
- W4310548084 hasConceptScore W4310548084C126255220 @default.
- W4310548084 hasConceptScore W4310548084C127413603 @default.
- W4310548084 hasConceptScore W4310548084C131097465 @default.
- W4310548084 hasConceptScore W4310548084C139719470 @default.
- W4310548084 hasConceptScore W4310548084C153083717 @default.
- W4310548084 hasConceptScore W4310548084C154945302 @default.
- W4310548084 hasConceptScore W4310548084C162324750 @default.
- W4310548084 hasConceptScore W4310548084C164620267 @default.
- W4310548084 hasConceptScore W4310548084C2780595030 @default.
- W4310548084 hasConceptScore W4310548084C2780971903 @default.
- W4310548084 hasConceptScore W4310548084C33923547 @default.
- W4310548084 hasConceptScore W4310548084C41008148 @default.
- W4310548084 hasConceptScore W4310548084C45374587 @default.
- W4310548084 hasConceptScore W4310548084C50644808 @default.
- W4310548084 hasConceptScore W4310548084C76155785 @default.
- W4310548084 hasConceptScore W4310548084C78519656 @default.
- W4310548084 hasConceptScore W4310548084C82876162 @default.
- W4310548084 hasConceptScore W4310548084C94375191 @default.
- W4310548084 hasLocation W43105480841 @default.
- W4310548084 hasOpenAccess W4310548084 @default.
- W4310548084 hasPrimaryLocation W43105480841 @default.
- W4310548084 hasRelatedWork W1969051252 @default.
- W4310548084 hasRelatedWork W1984655072 @default.
- W4310548084 hasRelatedWork W2028996897 @default.
- W4310548084 hasRelatedWork W2077881312 @default.
- W4310548084 hasRelatedWork W2375191548 @default.
- W4310548084 hasRelatedWork W2534136239 @default.
- W4310548084 hasRelatedWork W2599118168 @default.
- W4310548084 hasRelatedWork W2809998761 @default.
- W4310548084 hasRelatedWork W2955267291 @default.
- W4310548084 hasRelatedWork W3120857207 @default.
- W4310548084 isParatext "false" @default.
- W4310548084 isRetracted "false" @default.
- W4310548084 workType "article" @default.