Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310551433> ?p ?o ?g. }
- W4310551433 endingPage "046301" @default.
- W4310551433 startingPage "046301" @default.
- W4310551433 abstract "<sec>Ni-Mn-Ti-based all-d-metal Heusler alloys have become a hot research topic in the field of metal functional materials due to their excellent mechanical properties and elastocaloric effect. However, the relatively large critical stress and transition hysteresis limit its practical applications. Some researchers have found that doping Fe in Ni-Mn-based alloys can not only reduce hysteresis, but also greatly improve the mechanical properties of alloys. Based on this, the effects of Fe doping on phase stability, martensitic transformation and magnetic properties of Ni<sub>50–<i>x</i></sub>Mn<sub>37.5</sub>Ti<sub>12.5</sub>Fe<sub><i>x</i></sub> (<i>x</i> = 3.125, 6.25, 9.375) Heusler alloys are systematically studied by first principles calculation. The corresponding magnetic states of the austenite and martensite of the alloy systems are determined according to the results of the formation energy. The variations of the lattice constants and the phase stability of the austenite and martensite with the increase of Fe content in the alloy systems are revealed, and the associated mechanism is elucidated. The atomic and total magnetic moments of the austenite and martensite in the Ni<sub>50–<i>x</i></sub>Mn<sub>37.5</sub>Ti<sub>12.5</sub>Fe<sub><i>x</i></sub> (<i>x</i> = 3.125, 6.25, 9.375) systems are calculated. Based on the results of electronic structure, the essential reasons for the magnetic state changes of the alloys are further explained.</sec><sec>In the Ni<sub>50–<i>x</i></sub>Mn<sub>37.5</sub>Ti<sub>12.5</sub>Fe<sub><i>x</i></sub> alloy system, the lattice constant of austenite decreases gradually with the increase of Fe doping amount. The stability of austenite phase and martensite phase decrease with the increase of Fe doping amount. Under the different compositions, the formation energy of martensite is always lower than that of austenite, indicating that the alloy can undergo martensite transformation. The energy difference Δ<i>E</i>, electron concentration <i>e</i>/<i>a</i> and density of electrons <i>n</i> of the alloy show a decreasing trend, indicating that the driving force of martensitic transformation decreases, and the corresponding martensitic transformation temperature decreases with the increase of Fe atom doping.</sec><sec>The austenite of the alloy is ferromagnetic and the martensite is antiferromagnetic. After the martensitic transformation, the distance between Mn-Mn atoms decreases, and the magnetic moments of Mn<sub>Mn</sub> and Mn<sub>Ti</sub> atoms are arranged in antiparallel manner, resulting in the total magnetic moments being almost zero. The magnetic properties of the two phases are little affected by the amount of Fe atom doping. The peak density of electronic states in the Fermi surface of martensite phase is lower than that of austenite phase, indicating that martensite phase has a more stable electronic structure than austenite phase. During the transition from austenite to martensite, there is a Jahn-Teller splitting effect at the peak of the down-spin density of states near the Fermi surface. The aim of this paper is to provide guidance for designing the composition design and optimizing the property of the Ni-Mn-Ti-Fe alloy.</sec>" @default.
- W4310551433 created "2022-12-12" @default.
- W4310551433 creator A5010697288 @default.
- W4310551433 creator A5022540704 @default.
- W4310551433 creator A5028588934 @default.
- W4310551433 creator A5033000067 @default.
- W4310551433 creator A5040884619 @default.
- W4310551433 creator A5056344414 @default.
- W4310551433 creator A5063140774 @default.
- W4310551433 creator A5076348324 @default.
- W4310551433 date "2023-01-01" @default.
- W4310551433 modified "2023-10-18" @default.
- W4310551433 title "Effects of Fe doping on Martensitic Transformation and magnetic properties of Ni-Mn-Ti All-d-metal Heusler Alloy" @default.
- W4310551433 cites W1529127015 @default.
- W4310551433 cites W1547782642 @default.
- W4310551433 cites W1596748785 @default.
- W4310551433 cites W1669899979 @default.
- W4310551433 cites W1970824304 @default.
- W4310551433 cites W1976737865 @default.
- W4310551433 cites W1982944579 @default.
- W4310551433 cites W1985001143 @default.
- W4310551433 cites W1988762313 @default.
- W4310551433 cites W1989178898 @default.
- W4310551433 cites W1989976819 @default.
- W4310551433 cites W2024439117 @default.
- W4310551433 cites W2034914905 @default.
- W4310551433 cites W2035019345 @default.
- W4310551433 cites W2040238165 @default.
- W4310551433 cites W2044595711 @default.
- W4310551433 cites W2057764991 @default.
- W4310551433 cites W2064438715 @default.
- W4310551433 cites W2065363833 @default.
- W4310551433 cites W2069970015 @default.
- W4310551433 cites W2071877199 @default.
- W4310551433 cites W2083222334 @default.
- W4310551433 cites W2133105795 @default.
- W4310551433 cites W2158202343 @default.
- W4310551433 cites W2745968944 @default.
- W4310551433 cites W2781115226 @default.
- W4310551433 cites W2922241236 @default.
- W4310551433 cites W2939702144 @default.
- W4310551433 cites W2950777833 @default.
- W4310551433 cites W2955813353 @default.
- W4310551433 cites W2977907859 @default.
- W4310551433 cites W3047873529 @default.
- W4310551433 cites W3091845075 @default.
- W4310551433 cites W3102992486 @default.
- W4310551433 cites W3110849003 @default.
- W4310551433 cites W3175685240 @default.
- W4310551433 cites W331463604 @default.
- W4310551433 cites W4286267882 @default.
- W4310551433 cites W4294030563 @default.
- W4310551433 cites W4306932912 @default.
- W4310551433 doi "https://doi.org/10.7498/aps.72.20222037" @default.
- W4310551433 hasPublicationYear "2023" @default.
- W4310551433 type Work @default.
- W4310551433 citedByCount "0" @default.
- W4310551433 crossrefType "journal-article" @default.
- W4310551433 hasAuthorship W4310551433A5010697288 @default.
- W4310551433 hasAuthorship W4310551433A5022540704 @default.
- W4310551433 hasAuthorship W4310551433A5028588934 @default.
- W4310551433 hasAuthorship W4310551433A5033000067 @default.
- W4310551433 hasAuthorship W4310551433A5040884619 @default.
- W4310551433 hasAuthorship W4310551433A5056344414 @default.
- W4310551433 hasAuthorship W4310551433A5063140774 @default.
- W4310551433 hasAuthorship W4310551433A5076348324 @default.
- W4310551433 hasBestOaLocation W43105514331 @default.
- W4310551433 hasConcept C100454173 @default.
- W4310551433 hasConcept C115260700 @default.
- W4310551433 hasConcept C121332964 @default.
- W4310551433 hasConcept C185592680 @default.
- W4310551433 hasConcept C18747287 @default.
- W4310551433 hasConcept C191897082 @default.
- W4310551433 hasConcept C192562407 @default.
- W4310551433 hasConcept C26873012 @default.
- W4310551433 hasConcept C2780026712 @default.
- W4310551433 hasConcept C32546565 @default.
- W4310551433 hasConcept C32938098 @default.
- W4310551433 hasConcept C49040817 @default.
- W4310551433 hasConcept C544153396 @default.
- W4310551433 hasConcept C57863236 @default.
- W4310551433 hasConcept C62520636 @default.
- W4310551433 hasConcept C73170135 @default.
- W4310551433 hasConcept C8010536 @default.
- W4310551433 hasConcept C87976508 @default.
- W4310551433 hasConcept C96288455 @default.
- W4310551433 hasConceptScore W4310551433C100454173 @default.
- W4310551433 hasConceptScore W4310551433C115260700 @default.
- W4310551433 hasConceptScore W4310551433C121332964 @default.
- W4310551433 hasConceptScore W4310551433C185592680 @default.
- W4310551433 hasConceptScore W4310551433C18747287 @default.
- W4310551433 hasConceptScore W4310551433C191897082 @default.
- W4310551433 hasConceptScore W4310551433C192562407 @default.
- W4310551433 hasConceptScore W4310551433C26873012 @default.
- W4310551433 hasConceptScore W4310551433C2780026712 @default.
- W4310551433 hasConceptScore W4310551433C32546565 @default.
- W4310551433 hasConceptScore W4310551433C32938098 @default.
- W4310551433 hasConceptScore W4310551433C49040817 @default.