Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310554239> ?p ?o ?g. }
- W4310554239 endingPage "106372" @default.
- W4310554239 startingPage "106372" @default.
- W4310554239 abstract "Uncontrolled proliferation of B-lymphoblast cells is a common characterization of Acute Lymphoblastic Leukemia (ALL). B-lymphoblasts are found in large numbers in peripheral blood in malignant cases. Early detection of the cell in bone marrow is essential as the disease progresses rapidly if left untreated. However, automated classification of the cell is challenging, owing to its fine-grained variability with B-lymphoid precursor cells and imbalanced data points. Deep learning algorithms demonstrate potential for such fine-grained classification as well as suffer from the imbalanced class problem. In this paper, we explore different deep learning-based State-Of-The-Art (SOTA) approaches to tackle imbalanced classification problems. Our experiment includes input, GAN (Generative Adversarial Networks), and loss-based methods to mitigate the issue of imbalanced class on the challenging C-NMC and ALLIDB-2 dataset for leukemia detection. We have shown empirical evidence that loss-based methods outperform GAN-based and input-based methods in imbalanced classification scenarios." @default.
- W4310554239 created "2022-12-12" @default.
- W4310554239 creator A5012837694 @default.
- W4310554239 creator A5029167948 @default.
- W4310554239 creator A5051280144 @default.
- W4310554239 creator A5054894259 @default.
- W4310554239 creator A5062340144 @default.
- W4310554239 creator A5064333798 @default.
- W4310554239 date "2023-01-01" @default.
- W4310554239 modified "2023-09-27" @default.
- W4310554239 title "Quantifying imbalanced classification methods for leukemia detection" @default.
- W4310554239 cites W1549647993 @default.
- W4310554239 cites W1754612754 @default.
- W4310554239 cites W1976468890 @default.
- W4310554239 cites W2007023714 @default.
- W4310554239 cites W2009079013 @default.
- W4310554239 cites W2011503872 @default.
- W4310554239 cites W2035020726 @default.
- W4310554239 cites W2056561256 @default.
- W4310554239 cites W2108728387 @default.
- W4310554239 cites W2114340167 @default.
- W4310554239 cites W2117539524 @default.
- W4310554239 cites W2118061807 @default.
- W4310554239 cites W2167277498 @default.
- W4310554239 cites W2180133023 @default.
- W4310554239 cites W2194775991 @default.
- W4310554239 cites W2207171145 @default.
- W4310554239 cites W2229491714 @default.
- W4310554239 cites W2236741694 @default.
- W4310554239 cites W2337926734 @default.
- W4310554239 cites W2402659155 @default.
- W4310554239 cites W2517600007 @default.
- W4310554239 cites W2531607313 @default.
- W4310554239 cites W2725970815 @default.
- W4310554239 cites W2765934242 @default.
- W4310554239 cites W2766742395 @default.
- W4310554239 cites W2796394805 @default.
- W4310554239 cites W2893154092 @default.
- W4310554239 cites W2898491665 @default.
- W4310554239 cites W2910206206 @default.
- W4310554239 cites W2919979744 @default.
- W4310554239 cites W2928048063 @default.
- W4310554239 cites W2962793481 @default.
- W4310554239 cites W2962858109 @default.
- W4310554239 cites W2963073614 @default.
- W4310554239 cites W2963446712 @default.
- W4310554239 cites W2969340476 @default.
- W4310554239 cites W3014974411 @default.
- W4310554239 cites W3015967287 @default.
- W4310554239 cites W3025519219 @default.
- W4310554239 cites W3027643484 @default.
- W4310554239 cites W3036033661 @default.
- W4310554239 cites W3039681214 @default.
- W4310554239 cites W3048127440 @default.
- W4310554239 cites W3082260310 @default.
- W4310554239 cites W3102737931 @default.
- W4310554239 cites W3103031651 @default.
- W4310554239 cites W3132884096 @default.
- W4310554239 cites W3134651880 @default.
- W4310554239 cites W3154719286 @default.
- W4310554239 cites W3157699413 @default.
- W4310554239 cites W3168461491 @default.
- W4310554239 cites W3169902780 @default.
- W4310554239 cites W3200172539 @default.
- W4310554239 cites W3211582910 @default.
- W4310554239 cites W341879454 @default.
- W4310554239 cites W4238961266 @default.
- W4310554239 cites W4283322599 @default.
- W4310554239 doi "https://doi.org/10.1016/j.compbiomed.2022.106372" @default.
- W4310554239 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36516574" @default.
- W4310554239 hasPublicationYear "2023" @default.
- W4310554239 type Work @default.
- W4310554239 citedByCount "4" @default.
- W4310554239 countsByYear W43105542392023 @default.
- W4310554239 crossrefType "journal-article" @default.
- W4310554239 hasAuthorship W4310554239A5012837694 @default.
- W4310554239 hasAuthorship W4310554239A5029167948 @default.
- W4310554239 hasAuthorship W4310554239A5051280144 @default.
- W4310554239 hasAuthorship W4310554239A5054894259 @default.
- W4310554239 hasAuthorship W4310554239A5062340144 @default.
- W4310554239 hasAuthorship W4310554239A5064333798 @default.
- W4310554239 hasConcept C108583219 @default.
- W4310554239 hasConcept C113842279 @default.
- W4310554239 hasConcept C119857082 @default.
- W4310554239 hasConcept C153180895 @default.
- W4310554239 hasConcept C154945302 @default.
- W4310554239 hasConcept C203014093 @default.
- W4310554239 hasConcept C2777212361 @default.
- W4310554239 hasConcept C2778461978 @default.
- W4310554239 hasConcept C2909962599 @default.
- W4310554239 hasConcept C41008148 @default.
- W4310554239 hasConcept C54355233 @default.
- W4310554239 hasConcept C81885089 @default.
- W4310554239 hasConcept C86803240 @default.
- W4310554239 hasConceptScore W4310554239C108583219 @default.
- W4310554239 hasConceptScore W4310554239C113842279 @default.
- W4310554239 hasConceptScore W4310554239C119857082 @default.
- W4310554239 hasConceptScore W4310554239C153180895 @default.