Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310557128> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W4310557128 abstract "We initiate the study of certain cyclically skewed tropical hyperplanes, called permutohedral blades by A. Ocneanu, and we make connections matroid theory, tropical geometry, moduli spaces and scattering amplitudes. We study two families of piecewise constant functions on $mathbb{R}^{n-1}$ taking values in ${0,1}$ and $lbrack nrbrack ={1,2,ldots,n}$, called respectively characteristic functions and graduated functions. We show that their codimension-one level sets exactly permutohedral blades. Using ring-theoretic arguments we show that a blade decomposes as a Minkowski sum of tripods and one-dimensional subspaces. For each triangulation of a cyclically oriented polygon there exists such a factorization. In the language of tropical geometry, this constructs a tropical hypersurface as a Minkowski sum of tropical lines. We use the principle of inclusion/exclusion to construct a collection of piecewise constant functions of blades which we enumerate by the dimension of the support of the function. On the induced $mathbb{Q}$-vector space one has an induced grading; this grading is compatible with various quotient spaces appearing in algebra, topology and scattering amplitudes. This vector space maps homomorphically onto the so-called $Delta$-algebra, which appears in the study of non-planar MHV leading singularities, leading to non-planar analogs of the square move for plabic graphs for $G(2,n)$, called sphere moves. We give a closed formula for the graded dimension of the basis. It is shown in an Appendix by Donghyun Kim that the coefficients appearing in the numerator of the generating function for the graded dimension are symmetric, and that they sum to $frac{(2j)!}{j!}$." @default.
- W4310557128 created "2022-12-12" @default.
- W4310557128 creator A5002685783 @default.
- W4310557128 date "2018-10-07" @default.
- W4310557128 modified "2023-09-26" @default.
- W4310557128 title "Honeycomb Tessellations and Graded Permutohedral Blades" @default.
- W4310557128 doi "https://doi.org/10.48550/arxiv.1810.03246" @default.
- W4310557128 hasPublicationYear "2018" @default.
- W4310557128 type Work @default.
- W4310557128 citedByCount "0" @default.
- W4310557128 crossrefType "posted-content" @default.
- W4310557128 hasAuthorship W4310557128A5002685783 @default.
- W4310557128 hasBestOaLocation W43105571281 @default.
- W4310557128 hasConcept C114410712 @default.
- W4310557128 hasConcept C114614502 @default.
- W4310557128 hasConcept C12773090 @default.
- W4310557128 hasConcept C12843 @default.
- W4310557128 hasConcept C134306372 @default.
- W4310557128 hasConcept C164660894 @default.
- W4310557128 hasConcept C202444582 @default.
- W4310557128 hasConcept C2524010 @default.
- W4310557128 hasConcept C33923547 @default.
- W4310557128 hasConcept C68693459 @default.
- W4310557128 hasConceptScore W4310557128C114410712 @default.
- W4310557128 hasConceptScore W4310557128C114614502 @default.
- W4310557128 hasConceptScore W4310557128C12773090 @default.
- W4310557128 hasConceptScore W4310557128C12843 @default.
- W4310557128 hasConceptScore W4310557128C134306372 @default.
- W4310557128 hasConceptScore W4310557128C164660894 @default.
- W4310557128 hasConceptScore W4310557128C202444582 @default.
- W4310557128 hasConceptScore W4310557128C2524010 @default.
- W4310557128 hasConceptScore W4310557128C33923547 @default.
- W4310557128 hasConceptScore W4310557128C68693459 @default.
- W4310557128 hasLocation W43105571281 @default.
- W4310557128 hasLocation W43105571282 @default.
- W4310557128 hasOpenAccess W4310557128 @default.
- W4310557128 hasPrimaryLocation W43105571281 @default.
- W4310557128 hasRelatedWork W194238904 @default.
- W4310557128 hasRelatedWork W2069526425 @default.
- W4310557128 hasRelatedWork W2076044252 @default.
- W4310557128 hasRelatedWork W2135289285 @default.
- W4310557128 hasRelatedWork W2148500244 @default.
- W4310557128 hasRelatedWork W2594453118 @default.
- W4310557128 hasRelatedWork W2951482284 @default.
- W4310557128 hasRelatedWork W2997171467 @default.
- W4310557128 hasRelatedWork W3026358768 @default.
- W4310557128 hasRelatedWork W4290799241 @default.
- W4310557128 isParatext "false" @default.
- W4310557128 isRetracted "false" @default.
- W4310557128 workType "article" @default.