Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310557311> ?p ?o ?g. }
- W4310557311 endingPage "1015" @default.
- W4310557311 startingPage "1004" @default.
- W4310557311 abstract "High Resolution (HR) medical images provide rich anatomical structure details to facilitate early and accurate diagnosis. In magnetic resonance imaging (MRI), restricted by hardware capacity, scan time, and patient cooperation ability, isotropic 3-dimensional (3D) HR image acquisition typically requests long scan time and, results in small spatial coverage and low signal-to-noise ratio (SNR). Recent studies showed that, with deep convolutional neural networks, isotropic HR MR images could be recovered from low-resolution (LR) input via single image super-resolution (SISR) algorithms. However, most existing SISR methods tend to approach scale-specific projection between LR and HR images, thus these methods can only deal with fixed up-sampling rates. In this paper, we propose ArSSR, an <bold xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Ar</b> <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>bitrary</i> <bold xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>S</b> <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>cale</i> <bold xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>S</b> <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>uper-</i> <bold xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>R</b> <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>esolution</i> approach for recovering 3D HR MR images. In the ArSSR model, the LR image and the HR image are represented using the same implicit neural voxel function with different sampling rates. Due to the continuity of the learned implicit function, a <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>single</i> ArSSR model is able to achieve arbitrary and infinite up-sampling rate reconstructions of HR images from any input LR image. Then the SR task is converted to approach the implicit voxel function via deep neural networks from a set of paired HR and LR training examples. The ArSSR model consists of an encoder network and a decoder network. Specifically, the convolutional encoder network is to extract feature maps from the LR input images and the fully-connected decoder network is to approximate the implicit voxel function. Experimental results on three datasets show that the ArSSR model can achieve state-of-the-art SR performance for 3D HR MR image reconstruction while using a single trained model to achieve arbitrary up-sampling scales." @default.
- W4310557311 created "2022-12-12" @default.
- W4310557311 creator A5009327702 @default.
- W4310557311 creator A5019017581 @default.
- W4310557311 creator A5027081164 @default.
- W4310557311 creator A5045222641 @default.
- W4310557311 creator A5048171551 @default.
- W4310557311 creator A5058095576 @default.
- W4310557311 creator A5079702840 @default.
- W4310557311 date "2023-02-01" @default.
- W4310557311 modified "2023-10-17" @default.
- W4310557311 title "An Arbitrary Scale Super-Resolution Approach for 3D MR Images via Implicit Neural Representation" @default.
- W4310557311 cites W1498436455 @default.
- W4310557311 cites W1885185971 @default.
- W4310557311 cites W2024729467 @default.
- W4310557311 cites W2056189002 @default.
- W4310557311 cites W2103559027 @default.
- W4310557311 cites W2112024783 @default.
- W4310557311 cites W2117644767 @default.
- W4310557311 cites W2132710243 @default.
- W4310557311 cites W2133665775 @default.
- W4310557311 cites W2157466038 @default.
- W4310557311 cites W2187351272 @default.
- W4310557311 cites W2214802144 @default.
- W4310557311 cites W2242218935 @default.
- W4310557311 cites W2476548250 @default.
- W4310557311 cites W2581386739 @default.
- W4310557311 cites W2607041014 @default.
- W4310557311 cites W2709402577 @default.
- W4310557311 cites W2942080485 @default.
- W4310557311 cites W2962785568 @default.
- W4310557311 cites W2962849139 @default.
- W4310557311 cites W2963372104 @default.
- W4310557311 cites W2963470893 @default.
- W4310557311 cites W2963627347 @default.
- W4310557311 cites W2963926543 @default.
- W4310557311 cites W2964101377 @default.
- W4310557311 cites W2964297772 @default.
- W4310557311 cites W2989249732 @default.
- W4310557311 cites W2992937964 @default.
- W4310557311 cites W3002349559 @default.
- W4310557311 cites W3013529009 @default.
- W4310557311 cites W3020887200 @default.
- W4310557311 cites W3035557850 @default.
- W4310557311 cites W3098848838 @default.
- W4310557311 cites W3102018640 @default.
- W4310557311 cites W3103145119 @default.
- W4310557311 cites W3117476483 @default.
- W4310557311 cites W3174865552 @default.
- W4310557311 cites W3176327543 @default.
- W4310557311 cites W3176368002 @default.
- W4310557311 cites W3183905093 @default.
- W4310557311 cites W3202371506 @default.
- W4310557311 cites W4200150166 @default.
- W4310557311 cites W4214731463 @default.
- W4310557311 doi "https://doi.org/10.1109/jbhi.2022.3223106" @default.
- W4310557311 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37022393" @default.
- W4310557311 hasPublicationYear "2023" @default.
- W4310557311 type Work @default.
- W4310557311 citedByCount "3" @default.
- W4310557311 countsByYear W43105573112023 @default.
- W4310557311 crossrefType "journal-article" @default.
- W4310557311 hasAuthorship W4310557311A5009327702 @default.
- W4310557311 hasAuthorship W4310557311A5019017581 @default.
- W4310557311 hasAuthorship W4310557311A5027081164 @default.
- W4310557311 hasAuthorship W4310557311A5045222641 @default.
- W4310557311 hasAuthorship W4310557311A5048171551 @default.
- W4310557311 hasAuthorship W4310557311A5058095576 @default.
- W4310557311 hasAuthorship W4310557311A5079702840 @default.
- W4310557311 hasBestOaLocation W43105573112 @default.
- W4310557311 hasConcept C11413529 @default.
- W4310557311 hasConcept C121332964 @default.
- W4310557311 hasConcept C154945302 @default.
- W4310557311 hasConcept C2778755073 @default.
- W4310557311 hasConcept C41008148 @default.
- W4310557311 hasConcept C62520636 @default.
- W4310557311 hasConcept C81363708 @default.
- W4310557311 hasConceptScore W4310557311C11413529 @default.
- W4310557311 hasConceptScore W4310557311C121332964 @default.
- W4310557311 hasConceptScore W4310557311C154945302 @default.
- W4310557311 hasConceptScore W4310557311C2778755073 @default.
- W4310557311 hasConceptScore W4310557311C41008148 @default.
- W4310557311 hasConceptScore W4310557311C62520636 @default.
- W4310557311 hasConceptScore W4310557311C81363708 @default.
- W4310557311 hasFunder F4320321001 @default.
- W4310557311 hasIssue "2" @default.
- W4310557311 hasLocation W43105573111 @default.
- W4310557311 hasLocation W43105573112 @default.
- W4310557311 hasLocation W43105573113 @default.
- W4310557311 hasOpenAccess W4310557311 @default.
- W4310557311 hasPrimaryLocation W43105573111 @default.
- W4310557311 hasRelatedWork W2521062615 @default.
- W4310557311 hasRelatedWork W2735477435 @default.
- W4310557311 hasRelatedWork W2805908200 @default.
- W4310557311 hasRelatedWork W2807436399 @default.
- W4310557311 hasRelatedWork W3001728219 @default.
- W4310557311 hasRelatedWork W3016958897 @default.
- W4310557311 hasRelatedWork W3045739591 @default.