Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310557497> ?p ?o ?g. }
- W4310557497 abstract "Abstract The dimension of models derived on the basis of data is commonly restricted by the number of observations, or in the context of monitored systems, sensing nodes. This is particularly true for structural systems, which are typically high-dimensional in nature. In the scope of physics-informed machine learning, this article proposes a framework—termed neural modal ordinary differential equations (Neural Modal ODEs)—to integrate physics-based modeling with deep learning for modeling the dynamics of monitored and high-dimensional engineered systems. In this initiating exploration, we restrict ourselves to linear or mildly nonlinear systems. We propose an architecture that couples a dynamic version of variational autoencoders with physics-informed neural ODEs (Pi-Neural ODEs). An encoder, as a part of the autoencoder, learns the mappings from the first few items of observational data to the initial values of the latent variables, which drive the learning of embedded dynamics via Pi-Neural ODEs, imposing a modal model structure on that latent space. The decoder of the proposed model adopts the eigenmodes derived from an eigenanalysis applied to the linearized portion of a physics-based model: a process implicitly carrying the spatial relationship between degrees-of-freedom (DOFs). The framework is validated on a numerical example, and an experimental dataset of a scaled cable-stayed bridge, where the learned hybrid model is shown to out perform a purely physics-based approach to modeling. We further show the functionality of the proposed scheme within the context of virtual sensing, that is, the recovery of generalized response quantities in unmeasured DOFs from spatially sparse data." @default.
- W4310557497 created "2022-12-12" @default.
- W4310557497 creator A5003923056 @default.
- W4310557497 creator A5011780290 @default.
- W4310557497 creator A5031138006 @default.
- W4310557497 creator A5034441003 @default.
- W4310557497 creator A5041260784 @default.
- W4310557497 creator A5071037763 @default.
- W4310557497 date "2022-01-01" @default.
- W4310557497 modified "2023-10-01" @default.
- W4310557497 title "Neural modal ordinary differential equations: Integrating physics-based modeling with neural ordinary differential equations for modeling high-dimensional monitored structures" @default.
- W4310557497 cites W171472367 @default.
- W4310557497 cites W1895558631 @default.
- W4310557497 cites W1925971948 @default.
- W4310557497 cites W1969696351 @default.
- W4310557497 cites W2014356541 @default.
- W4310557497 cites W2064704207 @default.
- W4310557497 cites W2068991306 @default.
- W4310557497 cites W2084183309 @default.
- W4310557497 cites W2165830583 @default.
- W4310557497 cites W2321361520 @default.
- W4310557497 cites W2777417212 @default.
- W4310557497 cites W2888178833 @default.
- W4310557497 cites W2899283552 @default.
- W4310557497 cites W2908541468 @default.
- W4310557497 cites W2964232608 @default.
- W4310557497 cites W2994070579 @default.
- W4310557497 cites W3008005432 @default.
- W4310557497 cites W3010839237 @default.
- W4310557497 cites W3011708739 @default.
- W4310557497 cites W3012535794 @default.
- W4310557497 cites W3013932226 @default.
- W4310557497 cites W3022953487 @default.
- W4310557497 cites W3023125515 @default.
- W4310557497 cites W3082851515 @default.
- W4310557497 cites W3104238631 @default.
- W4310557497 cites W3133294546 @default.
- W4310557497 cites W3135986616 @default.
- W4310557497 cites W3153522897 @default.
- W4310557497 cites W3162045419 @default.
- W4310557497 cites W3163993681 @default.
- W4310557497 cites W3165017000 @default.
- W4310557497 cites W3201269915 @default.
- W4310557497 cites W3205549933 @default.
- W4310557497 cites W3217062360 @default.
- W4310557497 cites W4206181076 @default.
- W4310557497 cites W4220758675 @default.
- W4310557497 cites W4235292672 @default.
- W4310557497 cites W3207318965 @default.
- W4310557497 doi "https://doi.org/10.1017/dce.2022.35" @default.
- W4310557497 hasPublicationYear "2022" @default.
- W4310557497 type Work @default.
- W4310557497 citedByCount "1" @default.
- W4310557497 countsByYear W43105574972023 @default.
- W4310557497 crossrefType "journal-article" @default.
- W4310557497 hasAuthorship W4310557497A5003923056 @default.
- W4310557497 hasAuthorship W4310557497A5011780290 @default.
- W4310557497 hasAuthorship W4310557497A5031138006 @default.
- W4310557497 hasAuthorship W4310557497A5034441003 @default.
- W4310557497 hasAuthorship W4310557497A5041260784 @default.
- W4310557497 hasAuthorship W4310557497A5071037763 @default.
- W4310557497 hasBestOaLocation W43105574971 @default.
- W4310557497 hasConcept C101738243 @default.
- W4310557497 hasConcept C134306372 @default.
- W4310557497 hasConcept C151730666 @default.
- W4310557497 hasConcept C154945302 @default.
- W4310557497 hasConcept C185592680 @default.
- W4310557497 hasConcept C188027245 @default.
- W4310557497 hasConcept C2779343474 @default.
- W4310557497 hasConcept C28826006 @default.
- W4310557497 hasConcept C33923547 @default.
- W4310557497 hasConcept C34862557 @default.
- W4310557497 hasConcept C41008148 @default.
- W4310557497 hasConcept C50644808 @default.
- W4310557497 hasConcept C51544822 @default.
- W4310557497 hasConcept C71139939 @default.
- W4310557497 hasConcept C78045399 @default.
- W4310557497 hasConcept C86803240 @default.
- W4310557497 hasConceptScore W4310557497C101738243 @default.
- W4310557497 hasConceptScore W4310557497C134306372 @default.
- W4310557497 hasConceptScore W4310557497C151730666 @default.
- W4310557497 hasConceptScore W4310557497C154945302 @default.
- W4310557497 hasConceptScore W4310557497C185592680 @default.
- W4310557497 hasConceptScore W4310557497C188027245 @default.
- W4310557497 hasConceptScore W4310557497C2779343474 @default.
- W4310557497 hasConceptScore W4310557497C28826006 @default.
- W4310557497 hasConceptScore W4310557497C33923547 @default.
- W4310557497 hasConceptScore W4310557497C34862557 @default.
- W4310557497 hasConceptScore W4310557497C41008148 @default.
- W4310557497 hasConceptScore W4310557497C50644808 @default.
- W4310557497 hasConceptScore W4310557497C51544822 @default.
- W4310557497 hasConceptScore W4310557497C71139939 @default.
- W4310557497 hasConceptScore W4310557497C78045399 @default.
- W4310557497 hasConceptScore W4310557497C86803240 @default.
- W4310557497 hasFunder F4320329197 @default.
- W4310557497 hasLocation W43105574971 @default.
- W4310557497 hasLocation W43105574972 @default.
- W4310557497 hasLocation W43105574973 @default.
- W4310557497 hasOpenAccess W4310557497 @default.
- W4310557497 hasPrimaryLocation W43105574971 @default.