Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310563579> ?p ?o ?g. }
- W4310563579 abstract "<sec> <title>BACKGROUND</title> Identifying and managing serious spinal pathology (SSP), such as cauda equina syndrome or spinal infection, is challenging. Traditional red flag questioning is increasingly criticised, and improving decision-making is being actively researched. </sec> <sec> <title>OBJECTIVE</title> We aimed to improve serious pathology identification by constructing and validating a decision support tool using Artificial Intelligence (AI) that combines current evidence and expert knowledge. </sec> <sec> <title>METHODS</title> A modified RAND appropriateness procedure, including variable, structure and probability elicitation was deployed to build a Bayesian AI model of reasoning elicited from 16 experts over 3 rounds. The causal model was designed to predict the likelihood of a patient with a particular presentation having an SSP. An established framework directed a 4-part validation that included comparison of the model with consensus statements, practice guidelines and recent research. Clinical cases were entered into the model and the results compared to clinical judgement from spinal experts. </sec> <sec> <title>RESULTS</title> The model included 38 variables in three domains of risk factors (10 variables), signs & symptoms (17 variables) and judgement factors (11). Comparison with the evidence showed the model is typically consistent but needs changes to e.g., 2 of 11 judgement factors. Case analysis showed cauda-equina-syndrome, space-occupying-lesion, cancer and inflammatory condition identification performed well across validation domains. Fracture performed less well, but with well-defined reasons for the erroneous results. </sec> <sec> <title>CONCLUSIONS</title> A knowledge-based AI system for decision support for SSP was constructed. The tool can be completed in a time period compatible with a patient contact and shows encouraging validity. Further work to improve the existing model and include treatment decision making is needed alongside prospective validation. The prototype tool is ready to be taken forward for refinement and clinical testing. </sec> <sec> <title>INTERNATIONAL REGISTERED REPORT</title> RR2-10.2196/21804 </sec>" @default.
- W4310563579 created "2022-12-12" @default.
- W4310563579 creator A5014721472 @default.
- W4310563579 creator A5040448524 @default.
- W4310563579 creator A5047429478 @default.
- W4310563579 creator A5049713852 @default.
- W4310563579 creator A5051172436 @default.
- W4310563579 creator A5070779059 @default.
- W4310563579 creator A5081923835 @default.
- W4310563579 date "2022-11-21" @default.
- W4310563579 modified "2023-09-24" @default.
- W4310563579 title "Assessing serious spinal pathology using Bayesian Network decision support: development and validation of a prototype tool (Preprint)" @default.
- W4310563579 cites W1488679267 @default.
- W4310563579 cites W1959741956 @default.
- W4310563579 cites W1989020770 @default.
- W4310563579 cites W1996445490 @default.
- W4310563579 cites W2029800614 @default.
- W4310563579 cites W2051483504 @default.
- W4310563579 cites W2089775223 @default.
- W4310563579 cites W2093110712 @default.
- W4310563579 cites W2105582580 @default.
- W4310563579 cites W2115985125 @default.
- W4310563579 cites W2164777277 @default.
- W4310563579 cites W2167536963 @default.
- W4310563579 cites W2192816303 @default.
- W4310563579 cites W2587913344 @default.
- W4310563579 cites W2593664192 @default.
- W4310563579 cites W2736063736 @default.
- W4310563579 cites W2755164686 @default.
- W4310563579 cites W2789380217 @default.
- W4310563579 cites W2891282619 @default.
- W4310563579 cites W2984661373 @default.
- W4310563579 cites W3027361304 @default.
- W4310563579 cites W3099682961 @default.
- W4310563579 cites W3126776143 @default.
- W4310563579 cites W3153434542 @default.
- W4310563579 cites W3205865125 @default.
- W4310563579 cites W3209628440 @default.
- W4310563579 cites W4205598966 @default.
- W4310563579 cites W4248578359 @default.
- W4310563579 cites W598998976 @default.
- W4310563579 doi "https://doi.org/10.2196/preprints.44187" @default.
- W4310563579 hasPublicationYear "2022" @default.
- W4310563579 type Work @default.
- W4310563579 citedByCount "0" @default.
- W4310563579 crossrefType "posted-content" @default.
- W4310563579 hasAuthorship W4310563579A5014721472 @default.
- W4310563579 hasAuthorship W4310563579A5040448524 @default.
- W4310563579 hasAuthorship W4310563579A5047429478 @default.
- W4310563579 hasAuthorship W4310563579A5049713852 @default.
- W4310563579 hasAuthorship W4310563579A5051172436 @default.
- W4310563579 hasAuthorship W4310563579A5070779059 @default.
- W4310563579 hasAuthorship W4310563579A5081923835 @default.
- W4310563579 hasConcept C116834253 @default.
- W4310563579 hasConcept C119857082 @default.
- W4310563579 hasConcept C126838900 @default.
- W4310563579 hasConcept C136764020 @default.
- W4310563579 hasConcept C154945302 @default.
- W4310563579 hasConcept C15744967 @default.
- W4310563579 hasConcept C17744445 @default.
- W4310563579 hasConcept C199539241 @default.
- W4310563579 hasConcept C204321447 @default.
- W4310563579 hasConcept C2776548248 @default.
- W4310563579 hasConcept C2780536975 @default.
- W4310563579 hasConcept C33724603 @default.
- W4310563579 hasConcept C41008148 @default.
- W4310563579 hasConcept C43169469 @default.
- W4310563579 hasConcept C59822182 @default.
- W4310563579 hasConcept C71924100 @default.
- W4310563579 hasConcept C84525736 @default.
- W4310563579 hasConcept C86803240 @default.
- W4310563579 hasConceptScore W4310563579C116834253 @default.
- W4310563579 hasConceptScore W4310563579C119857082 @default.
- W4310563579 hasConceptScore W4310563579C126838900 @default.
- W4310563579 hasConceptScore W4310563579C136764020 @default.
- W4310563579 hasConceptScore W4310563579C154945302 @default.
- W4310563579 hasConceptScore W4310563579C15744967 @default.
- W4310563579 hasConceptScore W4310563579C17744445 @default.
- W4310563579 hasConceptScore W4310563579C199539241 @default.
- W4310563579 hasConceptScore W4310563579C204321447 @default.
- W4310563579 hasConceptScore W4310563579C2776548248 @default.
- W4310563579 hasConceptScore W4310563579C2780536975 @default.
- W4310563579 hasConceptScore W4310563579C33724603 @default.
- W4310563579 hasConceptScore W4310563579C41008148 @default.
- W4310563579 hasConceptScore W4310563579C43169469 @default.
- W4310563579 hasConceptScore W4310563579C59822182 @default.
- W4310563579 hasConceptScore W4310563579C71924100 @default.
- W4310563579 hasConceptScore W4310563579C84525736 @default.
- W4310563579 hasConceptScore W4310563579C86803240 @default.
- W4310563579 hasLocation W43105635791 @default.
- W4310563579 hasOpenAccess W4310563579 @default.
- W4310563579 hasPrimaryLocation W43105635791 @default.
- W4310563579 hasRelatedWork W1470425429 @default.
- W4310563579 hasRelatedWork W2748952813 @default.
- W4310563579 hasRelatedWork W2899084033 @default.
- W4310563579 hasRelatedWork W3204641204 @default.
- W4310563579 hasRelatedWork W3210877509 @default.
- W4310563579 hasRelatedWork W4205958290 @default.
- W4310563579 hasRelatedWork W4249746146 @default.
- W4310563579 hasRelatedWork W4283016678 @default.