Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310580032> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4310580032 abstract "In the interdisciplinary field of finance and computing, scholars have proposed a method to calculate investor sentiment and thus predict stock trends from investor comment section data, which has also been transferred to perform analysis of the emotion of the news texts that would affect the investors’ decisions on investment. After the great success of textual sentiment analysis, some scholars found that the pictures’ emotions in the news have similar influences on investor sentiment. However, the problem is that, unlike the texts which can reflect the editor’s attitude directly and effectively, since some editors usually do not deliberately pay attention to the emotions of news pictures, most of them are published as how they look when taken. Few editors intentionally change pictures’ emotions according to their attitudes in post-processing moments. Thus, to apply a more precise stock forecasting model to automatic buying and selling software, it seems significant to figure out whether the news pictures and the texts express similar attitudes and in what kinds of news pictures can accurately convey the attitude of the news editor. We collected articles about finance from four sources and conducted a correlation analysis between textual sentiments and pictures’ emotions to solve these two problems. A modified NLP model provides textual sentiments, and a two-category deep learning model gives pictures’ emotions. On the whole, this work not only helps improve the accuracy of the automatic buying and selling software but also makes automatic control more intelligent." @default.
- W4310580032 created "2022-12-12" @default.
- W4310580032 creator A5013446313 @default.
- W4310580032 creator A5046834309 @default.
- W4310580032 creator A5049844296 @default.
- W4310580032 creator A5065300039 @default.
- W4310580032 creator A5068152640 @default.
- W4310580032 creator A5075048645 @default.
- W4310580032 date "2022-12-02" @default.
- W4310580032 modified "2023-10-17" @default.
- W4310580032 title "Explore the relationship between textual sentiments and pictures' emotions based on unit quantification" @default.
- W4310580032 cites W2006354011 @default.
- W4310580032 cites W2157390830 @default.
- W4310580032 cites W2969860847 @default.
- W4310580032 cites W3043843002 @default.
- W4310580032 cites W3044337684 @default.
- W4310580032 cites W4230116153 @default.
- W4310580032 doi "https://doi.org/10.1117/12.2640934" @default.
- W4310580032 hasPublicationYear "2022" @default.
- W4310580032 type Work @default.
- W4310580032 citedByCount "0" @default.
- W4310580032 crossrefType "proceedings-article" @default.
- W4310580032 hasAuthorship W4310580032A5013446313 @default.
- W4310580032 hasAuthorship W4310580032A5046834309 @default.
- W4310580032 hasAuthorship W4310580032A5049844296 @default.
- W4310580032 hasAuthorship W4310580032A5065300039 @default.
- W4310580032 hasAuthorship W4310580032A5068152640 @default.
- W4310580032 hasAuthorship W4310580032A5075048645 @default.
- W4310580032 hasConcept C154945302 @default.
- W4310580032 hasConcept C15744967 @default.
- W4310580032 hasConcept C199360897 @default.
- W4310580032 hasConcept C202444582 @default.
- W4310580032 hasConcept C2522767166 @default.
- W4310580032 hasConcept C2776035688 @default.
- W4310580032 hasConcept C2777904410 @default.
- W4310580032 hasConcept C33923547 @default.
- W4310580032 hasConcept C41008148 @default.
- W4310580032 hasConcept C46312422 @default.
- W4310580032 hasConcept C66402592 @default.
- W4310580032 hasConcept C9652623 @default.
- W4310580032 hasConceptScore W4310580032C154945302 @default.
- W4310580032 hasConceptScore W4310580032C15744967 @default.
- W4310580032 hasConceptScore W4310580032C199360897 @default.
- W4310580032 hasConceptScore W4310580032C202444582 @default.
- W4310580032 hasConceptScore W4310580032C2522767166 @default.
- W4310580032 hasConceptScore W4310580032C2776035688 @default.
- W4310580032 hasConceptScore W4310580032C2777904410 @default.
- W4310580032 hasConceptScore W4310580032C33923547 @default.
- W4310580032 hasConceptScore W4310580032C41008148 @default.
- W4310580032 hasConceptScore W4310580032C46312422 @default.
- W4310580032 hasConceptScore W4310580032C66402592 @default.
- W4310580032 hasConceptScore W4310580032C9652623 @default.
- W4310580032 hasLocation W43105800321 @default.
- W4310580032 hasOpenAccess W4310580032 @default.
- W4310580032 hasPrimaryLocation W43105800321 @default.
- W4310580032 hasRelatedWork W2785614396 @default.
- W4310580032 hasRelatedWork W2957240988 @default.
- W4310580032 hasRelatedWork W3003963580 @default.
- W4310580032 hasRelatedWork W3046572078 @default.
- W4310580032 hasRelatedWork W4205300864 @default.
- W4310580032 hasRelatedWork W4206362798 @default.
- W4310580032 hasRelatedWork W4238539556 @default.
- W4310580032 hasRelatedWork W4281698752 @default.
- W4310580032 hasRelatedWork W4313648835 @default.
- W4310580032 hasRelatedWork W3177621218 @default.
- W4310580032 isParatext "false" @default.
- W4310580032 isRetracted "false" @default.
- W4310580032 workType "article" @default.