Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310580072> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4310580072 abstract "Abstract Millions of people are dying and billions of properties are damaged by road traffic accidents each year worldwide. In the case of our country Ethiopia, the effect of traffic accidents is even more by causing injuries, death, and property damage. Forecasting Road Traffic Accident and Predicting the severity of Road Traffic accident contributes a role indirectly in reducing road traffic accidents. This Study deals with forecasting the number of accident and prediction of the severity of an accident in the Oromia Special Zone using Deep Artificial Neural Network models. Around 6170 Road Traffic accidents data are collected from Oromia Police Commission Excel data and Oromia Special zone Traffic Police Department, the dataset consists of accidents in the Special Zone of Oromia Districts (Woredas) from 2005 to 2012 with 15 accidents attributes. 5928 or (80%) of the dataset was used for the training model and 1482 or (20%) of the dataset was used for the testing model. This study proposed Six different Neural Network architectures such as Backpropagation Neural Network (BPNN), Feed Forward Neural Network (FFNN), Multilayer Perceptron Neural Network (MLPNN), Recurrent Neural Networks (RNN), Radial Basis Function Neural Network (RBFNN) and Long Short-Term Memory (LSTM) models for accident severity prediction and The LSTM model for a time serious forecasting of number accidents within specified years. The models will take input data, classify accidents, predicts the severity of an accident. Accident predictor GUI has been created using Python Tkinter library for easy Accident Severity prediction. According to the model performance results RNN model showed the best prediction accuracy of 97.18% whereas MLP , LTSM, RBFNN, FFNN, and BPNN models showed the accuracy of 97.13%, 91.00%, 87.00%, 80.56%, 77.26%, respectively. LTSM model forecasted accident for Three years which is 3555 where the actual accident number is 3561. The prediction and forecast result obtained from the model will be helpful in planning and management of road traffic accidents." @default.
- W4310580072 created "2022-12-12" @default.
- W4310580072 creator A5005365162 @default.
- W4310580072 creator A5016821119 @default.
- W4310580072 creator A5050668156 @default.
- W4310580072 creator A5078712541 @default.
- W4310580072 date "2022-12-02" @default.
- W4310580072 modified "2023-09-25" @default.
- W4310580072 title "Forecasting Road Traffic Accident Using Deep Artificial Neural Network Approach in Case of Oromia Special Zone" @default.
- W4310580072 doi "https://doi.org/10.21203/rs.3.rs-735065/v1" @default.
- W4310580072 hasPublicationYear "2022" @default.
- W4310580072 type Work @default.
- W4310580072 citedByCount "0" @default.
- W4310580072 crossrefType "posted-content" @default.
- W4310580072 hasAuthorship W4310580072A5005365162 @default.
- W4310580072 hasAuthorship W4310580072A5016821119 @default.
- W4310580072 hasAuthorship W4310580072A5050668156 @default.
- W4310580072 hasAuthorship W4310580072A5078712541 @default.
- W4310580072 hasBestOaLocation W43105800721 @default.
- W4310580072 hasConcept C111919701 @default.
- W4310580072 hasConcept C119857082 @default.
- W4310580072 hasConcept C127413603 @default.
- W4310580072 hasConcept C154945302 @default.
- W4310580072 hasConcept C155032097 @default.
- W4310580072 hasConcept C179717631 @default.
- W4310580072 hasConcept C22212356 @default.
- W4310580072 hasConcept C2989506057 @default.
- W4310580072 hasConcept C3018122277 @default.
- W4310580072 hasConcept C41008148 @default.
- W4310580072 hasConcept C50644808 @default.
- W4310580072 hasConcept C519991488 @default.
- W4310580072 hasConceptScore W4310580072C111919701 @default.
- W4310580072 hasConceptScore W4310580072C119857082 @default.
- W4310580072 hasConceptScore W4310580072C127413603 @default.
- W4310580072 hasConceptScore W4310580072C154945302 @default.
- W4310580072 hasConceptScore W4310580072C155032097 @default.
- W4310580072 hasConceptScore W4310580072C179717631 @default.
- W4310580072 hasConceptScore W4310580072C22212356 @default.
- W4310580072 hasConceptScore W4310580072C2989506057 @default.
- W4310580072 hasConceptScore W4310580072C3018122277 @default.
- W4310580072 hasConceptScore W4310580072C41008148 @default.
- W4310580072 hasConceptScore W4310580072C50644808 @default.
- W4310580072 hasConceptScore W4310580072C519991488 @default.
- W4310580072 hasLocation W43105800721 @default.
- W4310580072 hasOpenAccess W4310580072 @default.
- W4310580072 hasPrimaryLocation W43105800721 @default.
- W4310580072 hasRelatedWork W1971064634 @default.
- W4310580072 hasRelatedWork W2023924986 @default.
- W4310580072 hasRelatedWork W2116531472 @default.
- W4310580072 hasRelatedWork W2600618515 @default.
- W4310580072 hasRelatedWork W2891993883 @default.
- W4310580072 hasRelatedWork W2945765785 @default.
- W4310580072 hasRelatedWork W4285815787 @default.
- W4310580072 hasRelatedWork W4310580072 @default.
- W4310580072 hasRelatedWork W1629725936 @default.
- W4310580072 hasRelatedWork W2555356437 @default.
- W4310580072 isParatext "false" @default.
- W4310580072 isRetracted "false" @default.
- W4310580072 workType "article" @default.