Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310581251> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4310581251 abstract "Mental stress detection based on Electrocardiogram (ECG) and deep learning has been widely researched recently. However, user-specific models trained on known subjects cannot precisely predict the mental stress conditions of new subjects because of the individual differences of ECG among various subjects. Unsupervised domain adaptation (UDA) tackles the problem by learning domain-invariant feature representations for the ECG data of both the known source subjects and the new target subjects. However, in the cross-subject mental stress detection scenario, these methods generally fail to deal with ambiguous target data that resides around the boundaries of different stress levels. To address the issue, we propose a novel ECG-based cross-subject mental stress detection method, named Discriminative Clustering Enhanced Adversarial Domain Adaptation (DC-ADA). Based on existing bi-classifier adversarial UDA methods, we propose to enhance the training step by incorporating a self-supervised loss on the target data. Specifically, we obtain the pseudo labels of target data through a clustering-based strategy, and leverage those labels as the supervision to encourage the ambiguous target data to be classified into correct stress levels. We compare our method with the leave-one-out methods and other UDA methods on three public mental stress datasets, and the experimental results validates the superiority of our method." @default.
- W4310581251 created "2022-12-12" @default.
- W4310581251 creator A5004268171 @default.
- W4310581251 creator A5004402334 @default.
- W4310581251 creator A5043019475 @default.
- W4310581251 creator A5046835504 @default.
- W4310581251 creator A5062262445 @default.
- W4310581251 date "2022-10-21" @default.
- W4310581251 modified "2023-09-24" @default.
- W4310581251 title "ECG-based Cross-Subject Mental Stress Detection via Discriminative Clustering Enhanced Adversarial Domain Adaptation" @default.
- W4310581251 cites W2026891775 @default.
- W4310581251 cites W2171801645 @default.
- W4310581251 cites W2194775991 @default.
- W4310581251 cites W2593768305 @default.
- W4310581251 cites W2604825588 @default.
- W4310581251 cites W2766415135 @default.
- W4310581251 cites W2814508204 @default.
- W4310581251 cites W2885866455 @default.
- W4310581251 cites W2894771803 @default.
- W4310581251 cites W2926366943 @default.
- W4310581251 cites W2929050222 @default.
- W4310581251 cites W2937732310 @default.
- W4310581251 cites W2962687275 @default.
- W4310581251 cites W2964288524 @default.
- W4310581251 cites W3011643582 @default.
- W4310581251 cites W3047111723 @default.
- W4310581251 cites W3047208690 @default.
- W4310581251 cites W3082016297 @default.
- W4310581251 cites W3200271021 @default.
- W4310581251 cites W4200284808 @default.
- W4310581251 cites W4206333717 @default.
- W4310581251 doi "https://doi.org/10.1109/icsp56322.2022.9965314" @default.
- W4310581251 hasPublicationYear "2022" @default.
- W4310581251 type Work @default.
- W4310581251 citedByCount "1" @default.
- W4310581251 countsByYear W43105812512023 @default.
- W4310581251 crossrefType "proceedings-article" @default.
- W4310581251 hasAuthorship W4310581251A5004268171 @default.
- W4310581251 hasAuthorship W4310581251A5004402334 @default.
- W4310581251 hasAuthorship W4310581251A5043019475 @default.
- W4310581251 hasAuthorship W4310581251A5046835504 @default.
- W4310581251 hasAuthorship W4310581251A5062262445 @default.
- W4310581251 hasConcept C119857082 @default.
- W4310581251 hasConcept C153180895 @default.
- W4310581251 hasConcept C154945302 @default.
- W4310581251 hasConcept C2776434776 @default.
- W4310581251 hasConcept C37736160 @default.
- W4310581251 hasConcept C41008148 @default.
- W4310581251 hasConcept C73555534 @default.
- W4310581251 hasConcept C95623464 @default.
- W4310581251 hasConcept C97931131 @default.
- W4310581251 hasConceptScore W4310581251C119857082 @default.
- W4310581251 hasConceptScore W4310581251C153180895 @default.
- W4310581251 hasConceptScore W4310581251C154945302 @default.
- W4310581251 hasConceptScore W4310581251C2776434776 @default.
- W4310581251 hasConceptScore W4310581251C37736160 @default.
- W4310581251 hasConceptScore W4310581251C41008148 @default.
- W4310581251 hasConceptScore W4310581251C73555534 @default.
- W4310581251 hasConceptScore W4310581251C95623464 @default.
- W4310581251 hasConceptScore W4310581251C97931131 @default.
- W4310581251 hasFunder F4320321001 @default.
- W4310581251 hasFunder F4320322990 @default.
- W4310581251 hasFunder F4320335787 @default.
- W4310581251 hasLocation W43105812511 @default.
- W4310581251 hasOpenAccess W4310581251 @default.
- W4310581251 hasPrimaryLocation W43105812511 @default.
- W4310581251 hasRelatedWork W2112343299 @default.
- W4310581251 hasRelatedWork W2797433568 @default.
- W4310581251 hasRelatedWork W2905846897 @default.
- W4310581251 hasRelatedWork W2949383447 @default.
- W4310581251 hasRelatedWork W2991541751 @default.
- W4310581251 hasRelatedWork W2998666297 @default.
- W4310581251 hasRelatedWork W3017503936 @default.
- W4310581251 hasRelatedWork W3031552518 @default.
- W4310581251 hasRelatedWork W3109829536 @default.
- W4310581251 hasRelatedWork W4255653719 @default.
- W4310581251 isParatext "false" @default.
- W4310581251 isRetracted "false" @default.
- W4310581251 workType "article" @default.