Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310581903> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4310581903 abstract "<strong class=journal-contentHeaderColor>Abstract.</strong> Earth's drylands are home to more than two billion people, provide key ecosystem services, and exert a large influence on the trends and variability in Earth's carbon cycle. However, modeling dryland carbon and water fluxes with remote sensing suffers from unique challenges not typically encountered in mesic systems, particularly in capturing soil moisture stress. Here, we develop and evaluate an approach for the joint modeling of dryland gross primary production (GPP), net ecosystem exchange (NEE), and evapotranspiration (ET) in the western United States (US) using a suite of AmeriFlux eddy covariance sites spanning major functional types and aridity regimes. We use artificial neural networks (ANNs) to predict dryland ecosystem fluxes by fusing optical vegetation indices, multitemporal thermal observations, and microwave soil moisture and temperature retrievals from the Soil Moisture Active Passive (SMAP) sensor. Our new dryland ANN (DrylANNd) carbon and water flux model explains more than 70â% of monthly variance in GPP and ET, improving upon existing MODIS GPP and ET estimates at most dryland eddy covariance sites. DrylANNd predictions of NEE were considerably worse than its predictions of GPP and ET likely because soil and plant respiratory processes are largely invisible to satellite sensors. Optical vegetation indices, particularly the normalized difference vegetation index (NDVI) and near-infrared reflectance of vegetation (NIR<span class=inline-formula><sub>v</sub></span>), were generally the most important variables contributing to model skill. However, daytime and nighttime land surface temperatures and SMAP soil moisture and soil temperature also contributed to model skill, with SMAP especially improving model predictions of shrubland, grassland, and savanna fluxes and land surface temperatures improving predictions in evergreen needleleaf forests. Our results show that a combination of optical vegetation indices and thermal infrared and microwave observations can substantially improve estimates of carbon and water fluxes in drylands, potentially providing the means to better monitor vegetation function and ecosystem services in these important regions that are undergoing rapid hydroclimatic change." @default.
- W4310581903 created "2022-12-12" @default.
- W4310581903 creator A5003077037 @default.
- W4310581903 date "2022-12-02" @default.
- W4310581903 modified "2023-09-25" @default.
- W4310581903 title "Reply on RC2" @default.
- W4310581903 doi "https://doi.org/10.5194/bg-2022-186-ac2" @default.
- W4310581903 hasPublicationYear "2022" @default.
- W4310581903 type Work @default.
- W4310581903 citedByCount "0" @default.
- W4310581903 crossrefType "peer-review" @default.
- W4310581903 hasAuthorship W4310581903A5003077037 @default.
- W4310581903 hasBestOaLocation W43105819031 @default.
- W4310581903 hasConcept C110872660 @default.
- W4310581903 hasConcept C127313418 @default.
- W4310581903 hasConcept C142724271 @default.
- W4310581903 hasConcept C150772632 @default.
- W4310581903 hasConcept C1549246 @default.
- W4310581903 hasConcept C176783924 @default.
- W4310581903 hasConcept C187320778 @default.
- W4310581903 hasConcept C18903297 @default.
- W4310581903 hasConcept C24717449 @default.
- W4310581903 hasConcept C24939127 @default.
- W4310581903 hasConcept C25989453 @default.
- W4310581903 hasConcept C2776133958 @default.
- W4310581903 hasConcept C2780376076 @default.
- W4310581903 hasConcept C35187779 @default.
- W4310581903 hasConcept C39432304 @default.
- W4310581903 hasConcept C71924100 @default.
- W4310581903 hasConcept C78869512 @default.
- W4310581903 hasConcept C86803240 @default.
- W4310581903 hasConcept C91586092 @default.
- W4310581903 hasConceptScore W4310581903C110872660 @default.
- W4310581903 hasConceptScore W4310581903C127313418 @default.
- W4310581903 hasConceptScore W4310581903C142724271 @default.
- W4310581903 hasConceptScore W4310581903C150772632 @default.
- W4310581903 hasConceptScore W4310581903C1549246 @default.
- W4310581903 hasConceptScore W4310581903C176783924 @default.
- W4310581903 hasConceptScore W4310581903C187320778 @default.
- W4310581903 hasConceptScore W4310581903C18903297 @default.
- W4310581903 hasConceptScore W4310581903C24717449 @default.
- W4310581903 hasConceptScore W4310581903C24939127 @default.
- W4310581903 hasConceptScore W4310581903C25989453 @default.
- W4310581903 hasConceptScore W4310581903C2776133958 @default.
- W4310581903 hasConceptScore W4310581903C2780376076 @default.
- W4310581903 hasConceptScore W4310581903C35187779 @default.
- W4310581903 hasConceptScore W4310581903C39432304 @default.
- W4310581903 hasConceptScore W4310581903C71924100 @default.
- W4310581903 hasConceptScore W4310581903C78869512 @default.
- W4310581903 hasConceptScore W4310581903C86803240 @default.
- W4310581903 hasConceptScore W4310581903C91586092 @default.
- W4310581903 hasLocation W43105819031 @default.
- W4310581903 hasOpenAccess W4310581903 @default.
- W4310581903 hasPrimaryLocation W43105819031 @default.
- W4310581903 hasRelatedWork W1980871238 @default.
- W4310581903 hasRelatedWork W2016356024 @default.
- W4310581903 hasRelatedWork W2106014050 @default.
- W4310581903 hasRelatedWork W2112442412 @default.
- W4310581903 hasRelatedWork W2308036081 @default.
- W4310581903 hasRelatedWork W2530027027 @default.
- W4310581903 hasRelatedWork W2566772013 @default.
- W4310581903 hasRelatedWork W2606551971 @default.
- W4310581903 hasRelatedWork W3021562156 @default.
- W4310581903 hasRelatedWork W4240875018 @default.
- W4310581903 isParatext "false" @default.
- W4310581903 isRetracted "false" @default.
- W4310581903 workType "peer-review" @default.