Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310581937> ?p ?o ?g. }
- W4310581937 endingPage "113235" @default.
- W4310581937 startingPage "113235" @default.
- W4310581937 abstract "In order to guarantee the safety of payload, crew, and structures, ships must exhibit good seakeeping, maneuverability, and structural-response performance, also when they operate in adverse weather conditions. In this context, the availability of forecasting methods to be included within model-predictive control approaches may represent a decisive factor. Here, a data-driven and equation-free modeling approach for forecasting of trajectories, motions, and forces of ships in waves is presented, based on dynamic mode decomposition (DMD). DMD is a data-driven modeling method, which provides a linear finite-dimensional representation of a possibly nonlinear system dynamics by means of a set of modes with associated frequencies. Its use for ship operating in waves has been little discussed and a systematic analysis of its forecasting capabilities is still needed in this context. Here, a statistical analysis of DMD forecasting capabilities is presented for ships in waves, including standard and augmented DMD. The statistical assessment uses multiple time series, studying the effects of the number of input/output waves, time steps, time derivatives, along with the use of time-shifted copies of time series by the Hankel matrix. The assessment of the forecasting capabilities is based on four metrics: normalized root mean square error, Pearson correlation coefficient, average angle measure, and normalized average minimum/maximum absolute error. Two test cases are used for the assessment: the course keeping of a self-propelled 5415M in irregular stern-quartering waves and the turning-circle of a free-running self-propelled KRISO Container Ship in regular waves. Results are overall promising and show how state augmentation (using from four to eight input waves, up to two time derivatives, and four time-shifted copies) improves the DMD forecasting capabilities up to two wave encounter periods in the future. Furthermore, DMD provides a method to identify the most important modes, shedding some light onto the physics of the underlying system dynamics." @default.
- W4310581937 created "2022-12-12" @default.
- W4310581937 creator A5022003705 @default.
- W4310581937 creator A5047085967 @default.
- W4310581937 creator A5071178969 @default.
- W4310581937 creator A5073878030 @default.
- W4310581937 date "2023-01-01" @default.
- W4310581937 modified "2023-10-12" @default.
- W4310581937 title "On the use of dynamic mode decomposition for time-series forecasting of ships operating in waves" @default.
- W4310581937 cites W1635210704 @default.
- W4310581937 cites W1723433682 @default.
- W4310581937 cites W1860903952 @default.
- W4310581937 cites W1979754629 @default.
- W4310581937 cites W2014356541 @default.
- W4310581937 cites W2130788749 @default.
- W4310581937 cites W2152411038 @default.
- W4310581937 cites W2164954534 @default.
- W4310581937 cites W2341174028 @default.
- W4310581937 cites W2463523319 @default.
- W4310581937 cites W2604335475 @default.
- W4310581937 cites W2890509843 @default.
- W4310581937 cites W2895418405 @default.
- W4310581937 cites W2945544219 @default.
- W4310581937 cites W3010733462 @default.
- W4310581937 cites W3019988632 @default.
- W4310581937 cites W3025508892 @default.
- W4310581937 cites W3028691001 @default.
- W4310581937 cites W3047136950 @default.
- W4310581937 cites W3082271877 @default.
- W4310581937 cites W3136344416 @default.
- W4310581937 cites W3168018105 @default.
- W4310581937 cites W3187381254 @default.
- W4310581937 cites W3210540299 @default.
- W4310581937 cites W3211717352 @default.
- W4310581937 cites W4206081696 @default.
- W4310581937 cites W4220735298 @default.
- W4310581937 cites W4229457075 @default.
- W4310581937 cites W4284970814 @default.
- W4310581937 cites W4287958397 @default.
- W4310581937 cites W4292756344 @default.
- W4310581937 cites W867913733 @default.
- W4310581937 doi "https://doi.org/10.1016/j.oceaneng.2022.113235" @default.
- W4310581937 hasPublicationYear "2023" @default.
- W4310581937 type Work @default.
- W4310581937 citedByCount "5" @default.
- W4310581937 countsByYear W43105819372023 @default.
- W4310581937 crossrefType "journal-article" @default.
- W4310581937 hasAuthorship W4310581937A5022003705 @default.
- W4310581937 hasAuthorship W4310581937A5047085967 @default.
- W4310581937 hasAuthorship W4310581937A5071178969 @default.
- W4310581937 hasAuthorship W4310581937A5073878030 @default.
- W4310581937 hasBestOaLocation W43105819372 @default.
- W4310581937 hasConcept C105795698 @default.
- W4310581937 hasConcept C127313418 @default.
- W4310581937 hasConcept C127413603 @default.
- W4310581937 hasConcept C134066672 @default.
- W4310581937 hasConcept C143724316 @default.
- W4310581937 hasConcept C151406439 @default.
- W4310581937 hasConcept C151730666 @default.
- W4310581937 hasConcept C158379750 @default.
- W4310581937 hasConcept C199104240 @default.
- W4310581937 hasConcept C2778314653 @default.
- W4310581937 hasConcept C2779343474 @default.
- W4310581937 hasConcept C2780528706 @default.
- W4310581937 hasConcept C31258907 @default.
- W4310581937 hasConcept C33923547 @default.
- W4310581937 hasConcept C37423430 @default.
- W4310581937 hasConcept C41008148 @default.
- W4310581937 hasConcept C44154836 @default.
- W4310581937 hasConceptScore W4310581937C105795698 @default.
- W4310581937 hasConceptScore W4310581937C127313418 @default.
- W4310581937 hasConceptScore W4310581937C127413603 @default.
- W4310581937 hasConceptScore W4310581937C134066672 @default.
- W4310581937 hasConceptScore W4310581937C143724316 @default.
- W4310581937 hasConceptScore W4310581937C151406439 @default.
- W4310581937 hasConceptScore W4310581937C151730666 @default.
- W4310581937 hasConceptScore W4310581937C158379750 @default.
- W4310581937 hasConceptScore W4310581937C199104240 @default.
- W4310581937 hasConceptScore W4310581937C2778314653 @default.
- W4310581937 hasConceptScore W4310581937C2779343474 @default.
- W4310581937 hasConceptScore W4310581937C2780528706 @default.
- W4310581937 hasConceptScore W4310581937C31258907 @default.
- W4310581937 hasConceptScore W4310581937C33923547 @default.
- W4310581937 hasConceptScore W4310581937C37423430 @default.
- W4310581937 hasConceptScore W4310581937C41008148 @default.
- W4310581937 hasConceptScore W4310581937C44154836 @default.
- W4310581937 hasLocation W43105819371 @default.
- W4310581937 hasLocation W43105819372 @default.
- W4310581937 hasOpenAccess W4310581937 @default.
- W4310581937 hasPrimaryLocation W43105819371 @default.
- W4310581937 hasRelatedWork W1549633880 @default.
- W4310581937 hasRelatedWork W2023158218 @default.
- W4310581937 hasRelatedWork W2266308989 @default.
- W4310581937 hasRelatedWork W2385694587 @default.
- W4310581937 hasRelatedWork W2484871047 @default.
- W4310581937 hasRelatedWork W3081482300 @default.
- W4310581937 hasRelatedWork W3153402119 @default.
- W4310581937 hasRelatedWork W4239129781 @default.