Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310584511> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4310584511 abstract "Object detection plays a crucial role in the field of computer vision. It is viewed as a challenging task as it identifies instances of objects from a particular class in digital images or videos. However, since the invention of deep learning methods, the performance of object detection has significantly improved. They are now able to learn semantic, high-level, and deeper features to address existing issues found in traditional architectures. In this paper, an evaluation framework has been proposed to assess the performance of Tiny Yolov3 and MobileNet SSD v1 for detecting people. In addition, both Tiny Yolov3 and MobileNet SSD v1 consist of a lightweight architecture that eliminates the expensive computation to run the models in real time detection using a NON-GPU platform. A fair comparison was made between the pre-trained models by using the two available datasets which are COCO and PASCAL VOC. The model’s performance was evaluated in a classroom scenario, where people were detected and counted. A mobile application was built to view the detection results and its performance was assessed when used with deep learning models. To have a more expansive evaluation, different parameters such as platform, cameras, and conditions were considered. From those parameters, different test cases were formulated and tested to determine which models excel the most and where. Following the evaluation, this paper proposes an evaluation framework for MobileNet SSD v1 and Tiny Yolov3 and provides a domain recommendation for future applications." @default.
- W4310584511 created "2022-12-12" @default.
- W4310584511 creator A5016465887 @default.
- W4310584511 creator A5056402182 @default.
- W4310584511 date "2022-11-22" @default.
- W4310584511 modified "2023-09-26" @default.
- W4310584511 title "Performance Evaluation Between Tiny Yolov3 and MobileNet SSDv1 for Object Detection" @default.
- W4310584511 cites W2483298958 @default.
- W4310584511 cites W2755118520 @default.
- W4310584511 cites W2766604260 @default.
- W4310584511 cites W2896726780 @default.
- W4310584511 cites W2904469115 @default.
- W4310584511 cites W2942231644 @default.
- W4310584511 cites W2954906602 @default.
- W4310584511 cites W2964967951 @default.
- W4310584511 cites W2998213123 @default.
- W4310584511 cites W3014036163 @default.
- W4310584511 cites W4200475431 @default.
- W4310584511 cites W4211256381 @default.
- W4310584511 doi "https://doi.org/10.1109/elecom54934.2022.9965250" @default.
- W4310584511 hasPublicationYear "2022" @default.
- W4310584511 type Work @default.
- W4310584511 citedByCount "0" @default.
- W4310584511 crossrefType "proceedings-article" @default.
- W4310584511 hasAuthorship W4310584511A5016465887 @default.
- W4310584511 hasAuthorship W4310584511A5056402182 @default.
- W4310584511 hasConcept C108583219 @default.
- W4310584511 hasConcept C11413529 @default.
- W4310584511 hasConcept C119857082 @default.
- W4310584511 hasConcept C153180895 @default.
- W4310584511 hasConcept C154945302 @default.
- W4310584511 hasConcept C159985019 @default.
- W4310584511 hasConcept C162324750 @default.
- W4310584511 hasConcept C187736073 @default.
- W4310584511 hasConcept C192562407 @default.
- W4310584511 hasConcept C199360897 @default.
- W4310584511 hasConcept C202444582 @default.
- W4310584511 hasConcept C2776151529 @default.
- W4310584511 hasConcept C2780451532 @default.
- W4310584511 hasConcept C2780502288 @default.
- W4310584511 hasConcept C30407753 @default.
- W4310584511 hasConcept C33923547 @default.
- W4310584511 hasConcept C41008148 @default.
- W4310584511 hasConcept C45374587 @default.
- W4310584511 hasConcept C75608658 @default.
- W4310584511 hasConcept C81363708 @default.
- W4310584511 hasConcept C9652623 @default.
- W4310584511 hasConceptScore W4310584511C108583219 @default.
- W4310584511 hasConceptScore W4310584511C11413529 @default.
- W4310584511 hasConceptScore W4310584511C119857082 @default.
- W4310584511 hasConceptScore W4310584511C153180895 @default.
- W4310584511 hasConceptScore W4310584511C154945302 @default.
- W4310584511 hasConceptScore W4310584511C159985019 @default.
- W4310584511 hasConceptScore W4310584511C162324750 @default.
- W4310584511 hasConceptScore W4310584511C187736073 @default.
- W4310584511 hasConceptScore W4310584511C192562407 @default.
- W4310584511 hasConceptScore W4310584511C199360897 @default.
- W4310584511 hasConceptScore W4310584511C202444582 @default.
- W4310584511 hasConceptScore W4310584511C2776151529 @default.
- W4310584511 hasConceptScore W4310584511C2780451532 @default.
- W4310584511 hasConceptScore W4310584511C2780502288 @default.
- W4310584511 hasConceptScore W4310584511C30407753 @default.
- W4310584511 hasConceptScore W4310584511C33923547 @default.
- W4310584511 hasConceptScore W4310584511C41008148 @default.
- W4310584511 hasConceptScore W4310584511C45374587 @default.
- W4310584511 hasConceptScore W4310584511C75608658 @default.
- W4310584511 hasConceptScore W4310584511C81363708 @default.
- W4310584511 hasConceptScore W4310584511C9652623 @default.
- W4310584511 hasLocation W43105845111 @default.
- W4310584511 hasOpenAccess W4310584511 @default.
- W4310584511 hasPrimaryLocation W43105845111 @default.
- W4310584511 hasRelatedWork W2754500569 @default.
- W4310584511 hasRelatedWork W2784396512 @default.
- W4310584511 hasRelatedWork W2896409332 @default.
- W4310584511 hasRelatedWork W2913302899 @default.
- W4310584511 hasRelatedWork W3021430260 @default.
- W4310584511 hasRelatedWork W3036934147 @default.
- W4310584511 hasRelatedWork W3080162487 @default.
- W4310584511 hasRelatedWork W3214521593 @default.
- W4310584511 hasRelatedWork W4311257506 @default.
- W4310584511 hasRelatedWork W4311401716 @default.
- W4310584511 isParatext "false" @default.
- W4310584511 isRetracted "false" @default.
- W4310584511 workType "article" @default.