Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310584540> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4310584540 abstract "Despite early diagnosis and estimating the future course of neurodegenerative and cancerous diseases being integral for survival of patients, clinical and algorithmic methods fail to effectively utilize the multimodal data available, are time-inefficient, and expensive, making it difficult to access accurate screenings for these diseases. Therefore, a novel end-to-end quantum machine learning approach using multiple data modalities for the identification of diagnoses, prognoses, and effective treatments is proposed. In a procedural flow, data is sourced from one or more of the following: CT scan images, webcam, patient-physician audio, Whole Slide Images, and clinical data. For image data, a Convolutional Neural Network, is employed to detect high level features. With text-based clinical data (including audio-derived data), a Bidirectional Encoder Representation model is used to extract text embeddings. For video data, pupil progression and average fixation duration features are manually crafted. All feature vectors are concatenated, normalized, passed through a Deep Neural Network, and then mapped to one of 38 neurodegenerative and cancerous diseases. For prognosis, features are pooled, concatenated with the diagnosis feature vector, and passed through another neural network with an output of survival times. Treatment prediction involves an information-retrieval task matching feature vectors to treatments/drug lists from the FDA. The proposed approach was tested on 5,000 patient profiles sourced from the public TCGA and JPND databases, outperforming all other state-of-the-art approaches. The model predicted diagnoses with an accuracy of 98.53%, achieved a Concordance Index of 0.94 in predicting prognoses, and in treatment prediction achieved a 99.32% accuracy." @default.
- W4310584540 created "2022-12-12" @default.
- W4310584540 creator A5035912783 @default.
- W4310584540 date "2022-10-26" @default.
- W4310584540 modified "2023-09-30" @default.
- W4310584540 title "A Multimodal Machine Learning Approach to Diagnosis, Prognosis, and Treatment Prediction for Neurodegenerative Diseases and Cancer" @default.
- W4310584540 cites W2156163116 @default.
- W4310584540 cites W2470818894 @default.
- W4310584540 cites W2753919178 @default.
- W4310584540 cites W2795903481 @default.
- W4310584540 cites W2896712926 @default.
- W4310584540 cites W3021397474 @default.
- W4310584540 doi "https://doi.org/10.1109/uemcon54665.2022.9965655" @default.
- W4310584540 hasPublicationYear "2022" @default.
- W4310584540 type Work @default.
- W4310584540 citedByCount "0" @default.
- W4310584540 crossrefType "proceedings-article" @default.
- W4310584540 hasAuthorship W4310584540A5035912783 @default.
- W4310584540 hasConcept C108583219 @default.
- W4310584540 hasConcept C119857082 @default.
- W4310584540 hasConcept C138885662 @default.
- W4310584540 hasConcept C142724271 @default.
- W4310584540 hasConcept C147168706 @default.
- W4310584540 hasConcept C153180895 @default.
- W4310584540 hasConcept C154945302 @default.
- W4310584540 hasConcept C2776401178 @default.
- W4310584540 hasConcept C41008148 @default.
- W4310584540 hasConcept C41895202 @default.
- W4310584540 hasConcept C50644808 @default.
- W4310584540 hasConcept C52622490 @default.
- W4310584540 hasConcept C534262118 @default.
- W4310584540 hasConcept C71924100 @default.
- W4310584540 hasConcept C81363708 @default.
- W4310584540 hasConceptScore W4310584540C108583219 @default.
- W4310584540 hasConceptScore W4310584540C119857082 @default.
- W4310584540 hasConceptScore W4310584540C138885662 @default.
- W4310584540 hasConceptScore W4310584540C142724271 @default.
- W4310584540 hasConceptScore W4310584540C147168706 @default.
- W4310584540 hasConceptScore W4310584540C153180895 @default.
- W4310584540 hasConceptScore W4310584540C154945302 @default.
- W4310584540 hasConceptScore W4310584540C2776401178 @default.
- W4310584540 hasConceptScore W4310584540C41008148 @default.
- W4310584540 hasConceptScore W4310584540C41895202 @default.
- W4310584540 hasConceptScore W4310584540C50644808 @default.
- W4310584540 hasConceptScore W4310584540C52622490 @default.
- W4310584540 hasConceptScore W4310584540C534262118 @default.
- W4310584540 hasConceptScore W4310584540C71924100 @default.
- W4310584540 hasConceptScore W4310584540C81363708 @default.
- W4310584540 hasLocation W43105845401 @default.
- W4310584540 hasOpenAccess W4310584540 @default.
- W4310584540 hasPrimaryLocation W43105845401 @default.
- W4310584540 hasRelatedWork W2059299633 @default.
- W4310584540 hasRelatedWork W2279398222 @default.
- W4310584540 hasRelatedWork W2406522397 @default.
- W4310584540 hasRelatedWork W2732542196 @default.
- W4310584540 hasRelatedWork W2738221750 @default.
- W4310584540 hasRelatedWork W2760085659 @default.
- W4310584540 hasRelatedWork W2773120646 @default.
- W4310584540 hasRelatedWork W3011074480 @default.
- W4310584540 hasRelatedWork W4299822940 @default.
- W4310584540 hasRelatedWork W4327499916 @default.
- W4310584540 isParatext "false" @default.
- W4310584540 isRetracted "false" @default.
- W4310584540 workType "article" @default.