Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310584702> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4310584702 abstract "Although ultrasound has become an important screening tool for the non-invasive diagnosis of breast cancer, it is limited by intra- and inter-observer variability, and subjectivity in diagnosis. On the other hand, deep learning-based approaches have the potential for objective and automated diagnosis in a manner that is efficient and reproducible. In this study, we propose a deep learning methodology for the classification of benign and malignant breast lesions based on combined ultrasound B-mode and Nakagami images. We hypothesize that combining the images, which contain complementary information, will provide better classification performance in a deep learning framework than using the images by themselves. The study included 230 patients who had 152 benign and 78 malignant masses. Nakagami images were formed using a sliding window applied to the envelope data of each patient. A superposition approach was adopted to form fused images, where Nakagami images and B-mode images were superimposed onto each other at differing weights. A modified VGG-16 network was trained on the resulting images, and performance was evaluated on a separate test dataset containing 50 images. Models trained using fused images outperformed models trained using individual B-mode and Nakagami images. Furthermore, the AVCs obtained by models trained on fused images were found to be statistically significantly higher than models trained on individual images. The obtained results demonstrate the feasibility of combining information from Nakagami and B-mode images, and its potential to provide improved diagnosis for breast cancer." @default.
- W4310584702 created "2022-12-12" @default.
- W4310584702 creator A5005964218 @default.
- W4310584702 creator A5022033678 @default.
- W4310584702 creator A5085018554 @default.
- W4310584702 date "2022-10-10" @default.
- W4310584702 modified "2023-09-28" @default.
- W4310584702 title "Combined B-mode and Nakagami Images for Improved Discrimination of Breast Masses using Deep Learning" @default.
- W4310584702 cites W1972126156 @default.
- W4310584702 cites W1993293918 @default.
- W4310584702 cites W2109305028 @default.
- W4310584702 cites W2117539524 @default.
- W4310584702 cites W2154116060 @default.
- W4310584702 cites W2154495415 @default.
- W4310584702 cites W2533800772 @default.
- W4310584702 cites W2606179580 @default.
- W4310584702 cites W2753140741 @default.
- W4310584702 cites W2982092517 @default.
- W4310584702 cites W2984156615 @default.
- W4310584702 cites W3135379929 @default.
- W4310584702 cites W3154126551 @default.
- W4310584702 cites W3166134106 @default.
- W4310584702 cites W3173890719 @default.
- W4310584702 doi "https://doi.org/10.1109/ius54386.2022.9957624" @default.
- W4310584702 hasPublicationYear "2022" @default.
- W4310584702 type Work @default.
- W4310584702 citedByCount "0" @default.
- W4310584702 crossrefType "proceedings-article" @default.
- W4310584702 hasAuthorship W4310584702A5005964218 @default.
- W4310584702 hasAuthorship W4310584702A5022033678 @default.
- W4310584702 hasAuthorship W4310584702A5085018554 @default.
- W4310584702 hasConcept C108583219 @default.
- W4310584702 hasConcept C11413529 @default.
- W4310584702 hasConcept C115098869 @default.
- W4310584702 hasConcept C153180895 @default.
- W4310584702 hasConcept C154945302 @default.
- W4310584702 hasConcept C41008148 @default.
- W4310584702 hasConcept C57273362 @default.
- W4310584702 hasConcept C81978471 @default.
- W4310584702 hasConceptScore W4310584702C108583219 @default.
- W4310584702 hasConceptScore W4310584702C11413529 @default.
- W4310584702 hasConceptScore W4310584702C115098869 @default.
- W4310584702 hasConceptScore W4310584702C153180895 @default.
- W4310584702 hasConceptScore W4310584702C154945302 @default.
- W4310584702 hasConceptScore W4310584702C41008148 @default.
- W4310584702 hasConceptScore W4310584702C57273362 @default.
- W4310584702 hasConceptScore W4310584702C81978471 @default.
- W4310584702 hasLocation W43105847021 @default.
- W4310584702 hasOpenAccess W4310584702 @default.
- W4310584702 hasPrimaryLocation W43105847021 @default.
- W4310584702 hasRelatedWork W2005051400 @default.
- W4310584702 hasRelatedWork W2503569529 @default.
- W4310584702 hasRelatedWork W2738221750 @default.
- W4310584702 hasRelatedWork W2773120646 @default.
- W4310584702 hasRelatedWork W3156786002 @default.
- W4310584702 hasRelatedWork W3208028783 @default.
- W4310584702 hasRelatedWork W4211209597 @default.
- W4310584702 hasRelatedWork W4245792239 @default.
- W4310584702 hasRelatedWork W564581980 @default.
- W4310584702 hasRelatedWork W3108696707 @default.
- W4310584702 isParatext "false" @default.
- W4310584702 isRetracted "false" @default.
- W4310584702 workType "article" @default.