Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310588386> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4310588386 abstract "3D data visualization is a non-trivial effort, however high-quality data processing and visualization is crucial in all spheres of computer vision tasks, especially if our tasks include work with real environment and require precise results. Many industries can benefit from automated object detection and its analysis. Effective environment information retrieving and its digitization open up great prospects in robotics and in the design of such systems that require scene reconstruction into point clouds. This solution offers new possibilities for mixed reality systems also. For example, with restored scene data we can add a virtual light source and illuminate the room, or it becomes possible to cast reflections of virtual objects in mirrors. A breakthrough in neural networks training on point clouds occurred recently after the PointNet architecture implementation, and the trend in working with 3D data continues to grow. Current research is aimed at implementing the interior objects recognition and 3D reconstruction approach that works with interior scenes and low-quality incomplete information from lidars. This method enables the selection of interior objects from the scene as well as the determination of their location and dimensions. PointNet neural network architecture trained on the ScanNet dataset was used to annotate and segment the point cloud. To create a triangle grid, the neural network Total3D understanding was employed. As a result, was built an interior environment reconstruction method using RGB images and point clouds as input data. A simple interior of a room reconstruction example is provided, along with the result quality assessment." @default.
- W4310588386 created "2022-12-12" @default.
- W4310588386 creator A5003642180 @default.
- W4310588386 creator A5045962786 @default.
- W4310588386 creator A5080746241 @default.
- W4310588386 creator A5084227909 @default.
- W4310588386 creator A5087388196 @default.
- W4310588386 date "2023-01-04" @default.
- W4310588386 modified "2023-10-17" @default.
- W4310588386 title "Deep learning in tasks of interior objects recognition and 3D reconstruction" @default.
- W4310588386 cites W2056898157 @default.
- W4310588386 cites W2071260790 @default.
- W4310588386 cites W2219155316 @default.
- W4310588386 cites W2466520635 @default.
- W4310588386 cites W2589346439 @default.
- W4310588386 cites W2784266992 @default.
- W4310588386 cites W2798996910 @default.
- W4310588386 cites W2805186955 @default.
- W4310588386 cites W2897529137 @default.
- W4310588386 cites W2899383251 @default.
- W4310588386 cites W2949677570 @default.
- W4310588386 cites W2953260709 @default.
- W4310588386 cites W3007357593 @default.
- W4310588386 cites W4288281561 @default.
- W4310588386 cites W4297836999 @default.
- W4310588386 doi "https://doi.org/10.1117/12.2643991" @default.
- W4310588386 hasPublicationYear "2023" @default.
- W4310588386 type Work @default.
- W4310588386 citedByCount "0" @default.
- W4310588386 crossrefType "proceedings-article" @default.
- W4310588386 hasAuthorship W4310588386A5003642180 @default.
- W4310588386 hasAuthorship W4310588386A5045962786 @default.
- W4310588386 hasAuthorship W4310588386A5080746241 @default.
- W4310588386 hasAuthorship W4310588386A5084227909 @default.
- W4310588386 hasAuthorship W4310588386A5087388196 @default.
- W4310588386 hasConcept C121684516 @default.
- W4310588386 hasConcept C131979681 @default.
- W4310588386 hasConcept C154945302 @default.
- W4310588386 hasConcept C194969405 @default.
- W4310588386 hasConcept C2779308522 @default.
- W4310588386 hasConcept C2781238097 @default.
- W4310588386 hasConcept C31972630 @default.
- W4310588386 hasConcept C36464697 @default.
- W4310588386 hasConcept C41008148 @default.
- W4310588386 hasConcept C50644808 @default.
- W4310588386 hasConcept C64876066 @default.
- W4310588386 hasConceptScore W4310588386C121684516 @default.
- W4310588386 hasConceptScore W4310588386C131979681 @default.
- W4310588386 hasConceptScore W4310588386C154945302 @default.
- W4310588386 hasConceptScore W4310588386C194969405 @default.
- W4310588386 hasConceptScore W4310588386C2779308522 @default.
- W4310588386 hasConceptScore W4310588386C2781238097 @default.
- W4310588386 hasConceptScore W4310588386C31972630 @default.
- W4310588386 hasConceptScore W4310588386C36464697 @default.
- W4310588386 hasConceptScore W4310588386C41008148 @default.
- W4310588386 hasConceptScore W4310588386C50644808 @default.
- W4310588386 hasConceptScore W4310588386C64876066 @default.
- W4310588386 hasLocation W43105883861 @default.
- W4310588386 hasOpenAccess W4310588386 @default.
- W4310588386 hasPrimaryLocation W43105883861 @default.
- W4310588386 hasRelatedWork W1528044252 @default.
- W4310588386 hasRelatedWork W1531683208 @default.
- W4310588386 hasRelatedWork W2009052148 @default.
- W4310588386 hasRelatedWork W2200925278 @default.
- W4310588386 hasRelatedWork W2328068029 @default.
- W4310588386 hasRelatedWork W2330829846 @default.
- W4310588386 hasRelatedWork W2363840281 @default.
- W4310588386 hasRelatedWork W2372904789 @default.
- W4310588386 hasRelatedWork W2707663905 @default.
- W4310588386 hasRelatedWork W814644723 @default.
- W4310588386 isParatext "false" @default.
- W4310588386 isRetracted "false" @default.
- W4310588386 workType "article" @default.