Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310588765> ?p ?o ?g. }
- W4310588765 abstract "Abstract Objective Hypertension has long been recognized as one of the most important predisposing factors for cardiovascular diseases and mortality. In recent years, machine learning methods have shown potential in diagnostic and predictive approaches in chronic diseases. Electronic health records (EHRs) have emerged as a reliable source of longitudinal data. The aim of this study is to predict the onset of hypertension using modern deep learning (DL) architectures, specifically long short-term memory (LSTM) networks, and longitudinal EHRs. Materials and Methods We compare this approach to the best performing models reported from previous works, particularly XGboost, applied to aggregated features. Our work is based on data from 233 895 adult patients from a large health system in the United States. We divided our population into 2 distinct longitudinal datasets based on the diagnosis date. To ensure generalization to unseen data, we trained our models on the first dataset (dataset A “train and validation”) using cross-validation, and then applied the models to a second dataset (dataset B “test”) to assess their performance. We also experimented with 2 different time-windows before the onset of hypertension and evaluated the impact on model performance. Results With the LSTM network, we were able to achieve an area under the receiver operating characteristic curve value of 0.98 in the “train and validation” dataset A and 0.94 in the “test” dataset B for a prediction time window of 1 year. Lipid disorders, type 2 diabetes, and renal disorders are found to be associated with incident hypertension. Conclusion These findings show that DL models based on temporal EHR data can improve the identification of patients at high risk of hypertension and corresponding driving factors. In the long term, this work may support identifying individuals who are at high risk for developing hypertension and facilitate earlier intervention to prevent the future development of hypertension." @default.
- W4310588765 created "2022-12-12" @default.
- W4310588765 creator A5000160693 @default.
- W4310588765 creator A5001694059 @default.
- W4310588765 creator A5013744805 @default.
- W4310588765 creator A5039442657 @default.
- W4310588765 creator A5047405500 @default.
- W4310588765 creator A5071606253 @default.
- W4310588765 creator A5091709940 @default.
- W4310588765 date "2022-10-04" @default.
- W4310588765 modified "2023-09-25" @default.
- W4310588765 title "Predicting hypertension onset from longitudinal electronic health records with deep learning" @default.
- W4310588765 cites W1966716734 @default.
- W4310588765 cites W1990836268 @default.
- W4310588765 cites W1998303631 @default.
- W4310588765 cites W2015462679 @default.
- W4310588765 cites W2064675550 @default.
- W4310588765 cites W2110052313 @default.
- W4310588765 cites W2111891653 @default.
- W4310588765 cites W2122825543 @default.
- W4310588765 cites W2404901863 @default.
- W4310588765 cites W2435880461 @default.
- W4310588765 cites W2481271618 @default.
- W4310588765 cites W2512716582 @default.
- W4310588765 cites W2550720962 @default.
- W4310588765 cites W2625625371 @default.
- W4310588765 cites W2765293807 @default.
- W4310588765 cites W2768267412 @default.
- W4310588765 cites W2786814109 @default.
- W4310588765 cites W2789687647 @default.
- W4310588765 cites W2810406622 @default.
- W4310588765 cites W2914527623 @default.
- W4310588765 cites W2993974782 @default.
- W4310588765 cites W2999615587 @default.
- W4310588765 cites W3011812967 @default.
- W4310588765 cites W3023529892 @default.
- W4310588765 cites W3109183357 @default.
- W4310588765 cites W4282940533 @default.
- W4310588765 doi "https://doi.org/10.1093/jamiaopen/ooac097" @default.
- W4310588765 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36448021" @default.
- W4310588765 hasPublicationYear "2022" @default.
- W4310588765 type Work @default.
- W4310588765 citedByCount "0" @default.
- W4310588765 crossrefType "journal-article" @default.
- W4310588765 hasAuthorship W4310588765A5000160693 @default.
- W4310588765 hasAuthorship W4310588765A5001694059 @default.
- W4310588765 hasAuthorship W4310588765A5013744805 @default.
- W4310588765 hasAuthorship W4310588765A5039442657 @default.
- W4310588765 hasAuthorship W4310588765A5047405500 @default.
- W4310588765 hasAuthorship W4310588765A5071606253 @default.
- W4310588765 hasAuthorship W4310588765A5091709940 @default.
- W4310588765 hasBestOaLocation W43105887651 @default.
- W4310588765 hasConcept C108583219 @default.
- W4310588765 hasConcept C119857082 @default.
- W4310588765 hasConcept C134018914 @default.
- W4310588765 hasConcept C134306372 @default.
- W4310588765 hasConcept C142724271 @default.
- W4310588765 hasConcept C154945302 @default.
- W4310588765 hasConcept C160735492 @default.
- W4310588765 hasConcept C162324750 @default.
- W4310588765 hasConcept C177148314 @default.
- W4310588765 hasConcept C2777895361 @default.
- W4310588765 hasConcept C2908647359 @default.
- W4310588765 hasConcept C3019952477 @default.
- W4310588765 hasConcept C3020144179 @default.
- W4310588765 hasConcept C33923547 @default.
- W4310588765 hasConcept C41008148 @default.
- W4310588765 hasConcept C45804977 @default.
- W4310588765 hasConcept C50522688 @default.
- W4310588765 hasConcept C555293320 @default.
- W4310588765 hasConcept C58471807 @default.
- W4310588765 hasConcept C71924100 @default.
- W4310588765 hasConcept C99454951 @default.
- W4310588765 hasConceptScore W4310588765C108583219 @default.
- W4310588765 hasConceptScore W4310588765C119857082 @default.
- W4310588765 hasConceptScore W4310588765C134018914 @default.
- W4310588765 hasConceptScore W4310588765C134306372 @default.
- W4310588765 hasConceptScore W4310588765C142724271 @default.
- W4310588765 hasConceptScore W4310588765C154945302 @default.
- W4310588765 hasConceptScore W4310588765C160735492 @default.
- W4310588765 hasConceptScore W4310588765C162324750 @default.
- W4310588765 hasConceptScore W4310588765C177148314 @default.
- W4310588765 hasConceptScore W4310588765C2777895361 @default.
- W4310588765 hasConceptScore W4310588765C2908647359 @default.
- W4310588765 hasConceptScore W4310588765C3019952477 @default.
- W4310588765 hasConceptScore W4310588765C3020144179 @default.
- W4310588765 hasConceptScore W4310588765C33923547 @default.
- W4310588765 hasConceptScore W4310588765C41008148 @default.
- W4310588765 hasConceptScore W4310588765C45804977 @default.
- W4310588765 hasConceptScore W4310588765C50522688 @default.
- W4310588765 hasConceptScore W4310588765C555293320 @default.
- W4310588765 hasConceptScore W4310588765C58471807 @default.
- W4310588765 hasConceptScore W4310588765C71924100 @default.
- W4310588765 hasConceptScore W4310588765C99454951 @default.
- W4310588765 hasFunder F4320332161 @default.
- W4310588765 hasIssue "4" @default.
- W4310588765 hasLocation W43105887651 @default.
- W4310588765 hasLocation W43105887652 @default.
- W4310588765 hasLocation W43105887653 @default.
- W4310588765 hasOpenAccess W4310588765 @default.