Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310594062> ?p ?o ?g. }
- W4310594062 endingPage "168" @default.
- W4310594062 startingPage "161" @default.
- W4310594062 abstract "Objective To predict the recurrence of non-small cell lung cancer (NSCLC) within 2 years after curative-intent treatment using a machine-learning approach with PET/CT-based radiomics. Patients and methods A total of 77 NSCLC patients who underwent pretreatment 18F-fluorodeoxyglucose PET/CT were retrospectively analyzed. Five clinical features (age, sex, tumor stage, tumor histology, and smoking status) and 48 radiomic features extracted from primary tumors on PET were used for binary classifications. These were ranked, and a subset of useful features was selected based on Gini coefficient scores in terms of associations with relapsed status. Areas under the receiver operating characteristics curves (AUC) were yielded by six machine-learning algorithms (support vector machine, random forest, neural network, naive Bayes, logistic regression, and gradient boosting). Model performances were compared and validated via random sampling. Results A PET/CT-based radiomic model was developed and validated for predicting the recurrence of NSCLC during the first 2 years after curation. The most important features were SD and variance of standardized uptake value, followed by low-intensity short-zone emphasis and high-intensity zone emphasis. The naive Bayes model with the 15 best-ranked features displayed the best performance (AUC: 0.816). Prediction models using the five best PET-derived features outperformed those using five clinical variables. Conclusion The machine learning model using PET-derived radiomic features showed good performance for predicting the recurrence of NSCLC during the first 2 years after a curative intent therapy. PET/CT-based radiomic features may help clinicians improve the risk stratification of relapsed NSCLC." @default.
- W4310594062 created "2022-12-12" @default.
- W4310594062 creator A5007200008 @default.
- W4310594062 creator A5017671066 @default.
- W4310594062 creator A5021024367 @default.
- W4310594062 creator A5073834933 @default.
- W4310594062 creator A5084653159 @default.
- W4310594062 date "2022-12-01" @default.
- W4310594062 modified "2023-09-23" @default.
- W4310594062 title "Application of 18F-fluorodeoxyglucose PET/CT radiomic features and machine learning to predict early recurrence of non-small cell lung cancer after curative-intent therapy" @default.
- W4310594062 cites W1408981388 @default.
- W4310594062 cites W1972111840 @default.
- W4310594062 cites W1980230302 @default.
- W4310594062 cites W2000036485 @default.
- W4310594062 cites W2004095404 @default.
- W4310594062 cites W2012002553 @default.
- W4310594062 cites W2019097189 @default.
- W4310594062 cites W2033973189 @default.
- W4310594062 cites W2038268416 @default.
- W4310594062 cites W2043187527 @default.
- W4310594062 cites W2051555930 @default.
- W4310594062 cites W2110402831 @default.
- W4310594062 cites W2126771835 @default.
- W4310594062 cites W2206013759 @default.
- W4310594062 cites W2226313998 @default.
- W4310594062 cites W2317060058 @default.
- W4310594062 cites W2409456704 @default.
- W4310594062 cites W2530489775 @default.
- W4310594062 cites W2710511383 @default.
- W4310594062 cites W2731220381 @default.
- W4310594062 cites W2807211466 @default.
- W4310594062 cites W2888082487 @default.
- W4310594062 cites W2909918086 @default.
- W4310594062 cites W2953404953 @default.
- W4310594062 cites W2964471257 @default.
- W4310594062 cites W2985928856 @default.
- W4310594062 cites W3033283324 @default.
- W4310594062 cites W3090317061 @default.
- W4310594062 cites W3096568603 @default.
- W4310594062 cites W3099474907 @default.
- W4310594062 cites W3128646645 @default.
- W4310594062 cites W3204030525 @default.
- W4310594062 cites W3217486600 @default.
- W4310594062 cites W4249817212 @default.
- W4310594062 cites W4287981142 @default.
- W4310594062 doi "https://doi.org/10.1097/mnm.0000000000001646" @default.
- W4310594062 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36458424" @default.
- W4310594062 hasPublicationYear "2022" @default.
- W4310594062 type Work @default.
- W4310594062 citedByCount "1" @default.
- W4310594062 countsByYear W43105940622023 @default.
- W4310594062 crossrefType "journal-article" @default.
- W4310594062 hasAuthorship W4310594062A5007200008 @default.
- W4310594062 hasAuthorship W4310594062A5017671066 @default.
- W4310594062 hasAuthorship W4310594062A5021024367 @default.
- W4310594062 hasAuthorship W4310594062A5073834933 @default.
- W4310594062 hasAuthorship W4310594062A5084653159 @default.
- W4310594062 hasConcept C119857082 @default.
- W4310594062 hasConcept C12267149 @default.
- W4310594062 hasConcept C126322002 @default.
- W4310594062 hasConcept C143998085 @default.
- W4310594062 hasConcept C151956035 @default.
- W4310594062 hasConcept C154945302 @default.
- W4310594062 hasConcept C169258074 @default.
- W4310594062 hasConcept C199374082 @default.
- W4310594062 hasConcept C2775842073 @default.
- W4310594062 hasConcept C2776256026 @default.
- W4310594062 hasConcept C2989005 @default.
- W4310594062 hasConcept C41008148 @default.
- W4310594062 hasConcept C52001869 @default.
- W4310594062 hasConcept C58471807 @default.
- W4310594062 hasConcept C71924100 @default.
- W4310594062 hasConceptScore W4310594062C119857082 @default.
- W4310594062 hasConceptScore W4310594062C12267149 @default.
- W4310594062 hasConceptScore W4310594062C126322002 @default.
- W4310594062 hasConceptScore W4310594062C143998085 @default.
- W4310594062 hasConceptScore W4310594062C151956035 @default.
- W4310594062 hasConceptScore W4310594062C154945302 @default.
- W4310594062 hasConceptScore W4310594062C169258074 @default.
- W4310594062 hasConceptScore W4310594062C199374082 @default.
- W4310594062 hasConceptScore W4310594062C2775842073 @default.
- W4310594062 hasConceptScore W4310594062C2776256026 @default.
- W4310594062 hasConceptScore W4310594062C2989005 @default.
- W4310594062 hasConceptScore W4310594062C41008148 @default.
- W4310594062 hasConceptScore W4310594062C52001869 @default.
- W4310594062 hasConceptScore W4310594062C58471807 @default.
- W4310594062 hasConceptScore W4310594062C71924100 @default.
- W4310594062 hasIssue "2" @default.
- W4310594062 hasLocation W43105940621 @default.
- W4310594062 hasLocation W43105940622 @default.
- W4310594062 hasOpenAccess W4310594062 @default.
- W4310594062 hasPrimaryLocation W43105940621 @default.
- W4310594062 hasRelatedWork W2899909823 @default.
- W4310594062 hasRelatedWork W3045445851 @default.
- W4310594062 hasRelatedWork W3204641204 @default.
- W4310594062 hasRelatedWork W4205415703 @default.
- W4310594062 hasRelatedWork W4225984265 @default.
- W4310594062 hasRelatedWork W4283016678 @default.