Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310596274> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4310596274 endingPage "428" @default.
- W4310596274 startingPage "418" @default.
- W4310596274 abstract "Early detection and management of sarcopenia is of clinical importance. We aimed to develop a chest X-ray-based deep learning model to predict presence of sarcopenia.Data of participants who visited osteoporosis clinic at Severance Hospital, Seoul, South Korea, between January 2020 and June 2021 were used as derivation cohort as split to train, validation and test set (65:15:20). A community-based older adults cohort (KURE) was used as external test set. Sarcopenia was defined based on Asian Working Group 2019 guideline. A deep learning model was trained to predict appendicular lean mass (ALM), handgrip strength (HGS) and chair rise test performance from chest X-ray images; then the machine learning model (SARC-CXR score) was built using the age, sex, body mass index and chest X-ray predicted muscle parameters along with estimation uncertainty values.Mean age of the derivation cohort (n = 926; women n = 700, 76%; sarcopenia n = 141, 15%) and the external test (n = 149; women n = 95, 64%; sarcopenia n = 18, 12%) cohort was 61.4 and 71.6 years, respectively. In the internal test set (a hold-out set, n = 189, from the derivation cohort) and the external test set (n = 149), the concordance correlation coefficient for ALM prediction was 0.80 and 0.76, with an average difference of 0.18 ± 2.71 and 0.21 ± 2.28, respectively. Gradient-weight class activation mapping for deep neural network models to predict ALM and HGS commonly showed highly weight pixel values at bilateral lung fields and part of the cardiac contour. SARC-CXR score showed good discriminatory performance for sarcopenia in both internal test set [area under the receiver-operating characteristics curve (AUROC) 0.813, area under the precision-recall curve (AUPRC) 0.380, sensitivity 0.844, specificity 0.739, F1-score 0.540] and external test set (AUROC 0.780, AUPRC 0.440, sensitivity 0.611, specificity 0.855, F1-score 0.458). Among SARC-CXR model features, predicted low ALM from chest X-ray was the most important predictor of sarcopenia based on SHapley Additive exPlanations values. Higher estimation uncertainty of HGS contributed to elevate the predicted risk of sarcopenia. In internal test set, SARC-CXR score showed better discriminatory performance than SARC-F score (AUROC 0.813 vs. 0.691, P = 0.029).Chest X-ray-based deep leaning model improved detection of sarcopenia, which merits further investigation." @default.
- W4310596274 created "2022-12-12" @default.
- W4310596274 creator A5038639051 @default.
- W4310596274 creator A5041844908 @default.
- W4310596274 creator A5050528373 @default.
- W4310596274 creator A5063502620 @default.
- W4310596274 creator A5067094953 @default.
- W4310596274 creator A5074353018 @default.
- W4310596274 creator A5080433925 @default.
- W4310596274 date "2022-12-01" @default.
- W4310596274 modified "2023-10-12" @default.
- W4310596274 title "Chest X‐ray‐based opportunistic screening of sarcopenia using deep learning" @default.
- W4310596274 cites W1516235509 @default.
- W4310596274 cites W1590654514 @default.
- W4310596274 cites W1863581270 @default.
- W4310596274 cites W1972786167 @default.
- W4310596274 cites W1994070656 @default.
- W4310596274 cites W2098026442 @default.
- W4310596274 cites W2133750711 @default.
- W4310596274 cites W2146171860 @default.
- W4310596274 cites W2169662778 @default.
- W4310596274 cites W2313339984 @default.
- W4310596274 cites W2328176404 @default.
- W4310596274 cites W2802561155 @default.
- W4310596274 cites W2811102464 @default.
- W4310596274 cites W2884687693 @default.
- W4310596274 cites W2893536008 @default.
- W4310596274 cites W2897513125 @default.
- W4310596274 cites W2963300950 @default.
- W4310596274 cites W2980851738 @default.
- W4310596274 cites W3005437800 @default.
- W4310596274 cites W3014524604 @default.
- W4310596274 cites W3023937161 @default.
- W4310596274 cites W3047809855 @default.
- W4310596274 cites W3102564565 @default.
- W4310596274 cites W3118929067 @default.
- W4310596274 cites W3183106751 @default.
- W4310596274 cites W3185079644 @default.
- W4310596274 cites W3186944329 @default.
- W4310596274 cites W3207985869 @default.
- W4310596274 cites W3217096962 @default.
- W4310596274 cites W4226017353 @default.
- W4310596274 cites W4310596274 @default.
- W4310596274 doi "https://doi.org/10.1002/jcsm.13144" @default.
- W4310596274 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36457204" @default.
- W4310596274 hasPublicationYear "2022" @default.
- W4310596274 type Work @default.
- W4310596274 citedByCount "4" @default.
- W4310596274 countsByYear W43105962742022 @default.
- W4310596274 countsByYear W43105962742023 @default.
- W4310596274 crossrefType "journal-article" @default.
- W4310596274 hasAuthorship W4310596274A5038639051 @default.
- W4310596274 hasAuthorship W4310596274A5041844908 @default.
- W4310596274 hasAuthorship W4310596274A5050528373 @default.
- W4310596274 hasAuthorship W4310596274A5063502620 @default.
- W4310596274 hasAuthorship W4310596274A5067094953 @default.
- W4310596274 hasAuthorship W4310596274A5074353018 @default.
- W4310596274 hasAuthorship W4310596274A5080433925 @default.
- W4310596274 hasBestOaLocation W43105962742 @default.
- W4310596274 hasConcept C126322002 @default.
- W4310596274 hasConcept C154945302 @default.
- W4310596274 hasConcept C160798450 @default.
- W4310596274 hasConcept C169903167 @default.
- W4310596274 hasConcept C2776214593 @default.
- W4310596274 hasConcept C2780221984 @default.
- W4310596274 hasConcept C41008148 @default.
- W4310596274 hasConcept C71924100 @default.
- W4310596274 hasConcept C72563966 @default.
- W4310596274 hasConceptScore W4310596274C126322002 @default.
- W4310596274 hasConceptScore W4310596274C154945302 @default.
- W4310596274 hasConceptScore W4310596274C160798450 @default.
- W4310596274 hasConceptScore W4310596274C169903167 @default.
- W4310596274 hasConceptScore W4310596274C2776214593 @default.
- W4310596274 hasConceptScore W4310596274C2780221984 @default.
- W4310596274 hasConceptScore W4310596274C41008148 @default.
- W4310596274 hasConceptScore W4310596274C71924100 @default.
- W4310596274 hasConceptScore W4310596274C72563966 @default.
- W4310596274 hasIssue "1" @default.
- W4310596274 hasLocation W43105962741 @default.
- W4310596274 hasLocation W43105962742 @default.
- W4310596274 hasLocation W43105962743 @default.
- W4310596274 hasOpenAccess W4310596274 @default.
- W4310596274 hasPrimaryLocation W43105962741 @default.
- W4310596274 hasRelatedWork W1987413475 @default.
- W4310596274 hasRelatedWork W2008054780 @default.
- W4310596274 hasRelatedWork W2514733910 @default.
- W4310596274 hasRelatedWork W3127173649 @default.
- W4310596274 hasRelatedWork W3134134177 @default.
- W4310596274 hasRelatedWork W3149563891 @default.
- W4310596274 hasRelatedWork W4353110892 @default.
- W4310596274 hasRelatedWork W4366975589 @default.
- W4310596274 hasRelatedWork W4379526598 @default.
- W4310596274 hasRelatedWork W4382117200 @default.
- W4310596274 hasVolume "14" @default.
- W4310596274 isParatext "false" @default.
- W4310596274 isRetracted "false" @default.
- W4310596274 workType "article" @default.