Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310603931> ?p ?o ?g. }
- W4310603931 endingPage "587" @default.
- W4310603931 startingPage "570" @default.
- W4310603931 abstract "Over 20% of US adults report they experience pain on most days or every day. Uncontrolled pain has led to increased healthcare utilization, hospitalization, emergency visits, and financial burden. Recognizing, assessing, understanding, and treating pain using artificial intelligence (AI) approaches may improve patient outcomes and healthcare resource utilization. A comprehensive synthesis of the current use and outcomes of AI-based interventions focused on pain assessment and management will guide the development of future research.This review aims to investigate the state of the research on AI-based interventions designed to improve pain assessment and management for adult patients. We also ascertain the actual outcomes of Al-based interventions for adult patients.The electronic databases searched include Web of Science, CINAHL, PsycINFO, Cochrane CENTRAL, Scopus, IEEE Xplore, and ACM Digital Library. The search initially identified 6946 studies. After screening, 30 studies met the inclusion criteria. The Critical Appraisals Skills Programme was used to assess study quality.This review provides evidence that machine learning, data mining, and natural language processing were used to improve efficient pain recognition and pain assessment, analyze self-reported pain data, predict pain, and help clinicians and patients to manage chronic pain more effectively.Findings from this review suggest that using AI-based interventions has a positive effect on pain recognition, pain prediction, and pain self-management; however, most reports are only pilot studies. More pilot studies with physiological pain measures are required before these approaches are ready for large clinical trial." @default.
- W4310603931 created "2022-12-12" @default.
- W4310603931 creator A5011437910 @default.
- W4310603931 creator A5028809397 @default.
- W4310603931 creator A5037575522 @default.
- W4310603931 creator A5056907588 @default.
- W4310603931 creator A5076811708 @default.
- W4310603931 creator A5078658866 @default.
- W4310603931 creator A5087308531 @default.
- W4310603931 creator A5090800302 @default.
- W4310603931 date "2022-12-02" @default.
- W4310603931 modified "2023-10-12" @default.
- W4310603931 title "Using artificial intelligence to improve pain assessment and pain management: a scoping review" @default.
- W4310603931 cites W1982207092 @default.
- W4310603931 cites W1997641100 @default.
- W4310603931 cites W2003134233 @default.
- W4310603931 cites W2031213082 @default.
- W4310603931 cites W2052596830 @default.
- W4310603931 cites W2060079959 @default.
- W4310603931 cites W2075950485 @default.
- W4310603931 cites W2104067190 @default.
- W4310603931 cites W2104383601 @default.
- W4310603931 cites W2106076952 @default.
- W4310603931 cites W2124728776 @default.
- W4310603931 cites W2137219016 @default.
- W4310603931 cites W2149394571 @default.
- W4310603931 cites W2394560926 @default.
- W4310603931 cites W2462596148 @default.
- W4310603931 cites W2534858547 @default.
- W4310603931 cites W2537075127 @default.
- W4310603931 cites W2551659193 @default.
- W4310603931 cites W2576404523 @default.
- W4310603931 cites W2593863352 @default.
- W4310603931 cites W2770346636 @default.
- W4310603931 cites W2787658963 @default.
- W4310603931 cites W2797636674 @default.
- W4310603931 cites W2809591186 @default.
- W4310603931 cites W2886512737 @default.
- W4310603931 cites W2887867491 @default.
- W4310603931 cites W2898656201 @default.
- W4310603931 cites W2902525495 @default.
- W4310603931 cites W2902901926 @default.
- W4310603931 cites W2908201961 @default.
- W4310603931 cites W2926287779 @default.
- W4310603931 cites W2979530546 @default.
- W4310603931 cites W3001878481 @default.
- W4310603931 cites W3024931901 @default.
- W4310603931 cites W3025948831 @default.
- W4310603931 cites W3032718371 @default.
- W4310603931 cites W3043374725 @default.
- W4310603931 cites W3048221799 @default.
- W4310603931 cites W3080409072 @default.
- W4310603931 cites W3090586341 @default.
- W4310603931 cites W3090676761 @default.
- W4310603931 cites W3148519214 @default.
- W4310603931 cites W3157008346 @default.
- W4310603931 cites W3192526060 @default.
- W4310603931 cites W3194384525 @default.
- W4310603931 cites W3199891602 @default.
- W4310603931 cites W3214400552 @default.
- W4310603931 cites W4210648686 @default.
- W4310603931 cites W4220825165 @default.
- W4310603931 cites W4221028170 @default.
- W4310603931 cites W4221038369 @default.
- W4310603931 cites W4225321639 @default.
- W4310603931 cites W4290660011 @default.
- W4310603931 cites W4295514428 @default.
- W4310603931 cites W80825727 @default.
- W4310603931 doi "https://doi.org/10.1093/jamia/ocac231" @default.
- W4310603931 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36458955" @default.
- W4310603931 hasPublicationYear "2022" @default.
- W4310603931 type Work @default.
- W4310603931 citedByCount "3" @default.
- W4310603931 countsByYear W43106039312023 @default.
- W4310603931 crossrefType "journal-article" @default.
- W4310603931 hasAuthorship W4310603931A5011437910 @default.
- W4310603931 hasAuthorship W4310603931A5028809397 @default.
- W4310603931 hasAuthorship W4310603931A5037575522 @default.
- W4310603931 hasAuthorship W4310603931A5056907588 @default.
- W4310603931 hasAuthorship W4310603931A5076811708 @default.
- W4310603931 hasAuthorship W4310603931A5078658866 @default.
- W4310603931 hasAuthorship W4310603931A5087308531 @default.
- W4310603931 hasAuthorship W4310603931A5090800302 @default.
- W4310603931 hasBestOaLocation W43106039311 @default.
- W4310603931 hasConcept C142724271 @default.
- W4310603931 hasConcept C159110408 @default.
- W4310603931 hasConcept C160735492 @default.
- W4310603931 hasConcept C162324750 @default.
- W4310603931 hasConcept C17744445 @default.
- W4310603931 hasConcept C1862650 @default.
- W4310603931 hasConcept C199539241 @default.
- W4310603931 hasConcept C204787440 @default.
- W4310603931 hasConcept C27415008 @default.
- W4310603931 hasConcept C2776478404 @default.
- W4310603931 hasConcept C2778282284 @default.
- W4310603931 hasConcept C2779473830 @default.
- W4310603931 hasConcept C2779549880 @default.
- W4310603931 hasConcept C2781145037 @default.