Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310608760> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4310608760 abstract "The question generation task can automatically generate large-scale questions to provide training data for reading comprehension tasks and QA systems, which are crucial for low-resource languages such as Tibetan. At present, due to the emergence of large-scale datasets and pre-trained language models in the Chinese and English domains, the task of question generation in the Chinese and English domains has been well developed, while the research on question generation in the Tibetan is still in its infancy. The main reason is the lack of datasets and the relatively backward development of various models in Tibetan. To solve the above questions, this paper constructs a Tibetan pre-trained language model TiBERT to provide a basis for the development of various downstream tasks, to expand the datasets of Tibetan machine reading comprehension, this paper proposes a Tibetan question generation model named TQGR. The model consists of two parts, the question generation and question quality assessment. The question generation adopts the classic seq2seq architecture to generate questions, and the question quality assessment improves the quality of generated questions by evaluating the fluency reward score, word repetition rate reward score and interrogative words classification auxiliary task. Finally, the experimental results show that our model has higher performance than baseline models, and ablation experiments demonstrate the effectiveness of the three mechanism." @default.
- W4310608760 created "2022-12-13" @default.
- W4310608760 creator A5022231767 @default.
- W4310608760 creator A5033595448 @default.
- W4310608760 creator A5048746096 @default.
- W4310608760 date "2022-10-27" @default.
- W4310608760 modified "2023-09-24" @default.
- W4310608760 title "Paragraph-level Tibetan Question Generation for Machine Reading Comprehension" @default.
- W4310608760 cites W2109609717 @default.
- W4310608760 cites W2610891036 @default.
- W4310608760 cites W2804292122 @default.
- W4310608760 cites W2808074080 @default.
- W4310608760 cites W2889670144 @default.
- W4310608760 cites W2890166583 @default.
- W4310608760 cites W2962717047 @default.
- W4310608760 cites W2962977247 @default.
- W4310608760 cites W2963250244 @default.
- W4310608760 cites W2963339397 @default.
- W4310608760 cites W2963748441 @default.
- W4310608760 cites W2964165364 @default.
- W4310608760 cites W2970705401 @default.
- W4310608760 cites W2970796366 @default.
- W4310608760 cites W2988673764 @default.
- W4310608760 doi "https://doi.org/10.1109/ialp57159.2022.9961244" @default.
- W4310608760 hasPublicationYear "2022" @default.
- W4310608760 type Work @default.
- W4310608760 citedByCount "0" @default.
- W4310608760 crossrefType "proceedings-article" @default.
- W4310608760 hasAuthorship W4310608760A5022231767 @default.
- W4310608760 hasAuthorship W4310608760A5033595448 @default.
- W4310608760 hasAuthorship W4310608760A5048746096 @default.
- W4310608760 hasConcept C111472728 @default.
- W4310608760 hasConcept C136764020 @default.
- W4310608760 hasConcept C137293760 @default.
- W4310608760 hasConcept C138885662 @default.
- W4310608760 hasConcept C154945302 @default.
- W4310608760 hasConcept C162324750 @default.
- W4310608760 hasConcept C187736073 @default.
- W4310608760 hasConcept C199360897 @default.
- W4310608760 hasConcept C204321447 @default.
- W4310608760 hasConcept C2776141515 @default.
- W4310608760 hasConcept C2777206241 @default.
- W4310608760 hasConcept C2777413886 @default.
- W4310608760 hasConcept C2778780117 @default.
- W4310608760 hasConcept C2779530757 @default.
- W4310608760 hasConcept C2780451532 @default.
- W4310608760 hasConcept C41008148 @default.
- W4310608760 hasConcept C41895202 @default.
- W4310608760 hasConcept C511192102 @default.
- W4310608760 hasConcept C554936623 @default.
- W4310608760 hasConceptScore W4310608760C111472728 @default.
- W4310608760 hasConceptScore W4310608760C136764020 @default.
- W4310608760 hasConceptScore W4310608760C137293760 @default.
- W4310608760 hasConceptScore W4310608760C138885662 @default.
- W4310608760 hasConceptScore W4310608760C154945302 @default.
- W4310608760 hasConceptScore W4310608760C162324750 @default.
- W4310608760 hasConceptScore W4310608760C187736073 @default.
- W4310608760 hasConceptScore W4310608760C199360897 @default.
- W4310608760 hasConceptScore W4310608760C204321447 @default.
- W4310608760 hasConceptScore W4310608760C2776141515 @default.
- W4310608760 hasConceptScore W4310608760C2777206241 @default.
- W4310608760 hasConceptScore W4310608760C2777413886 @default.
- W4310608760 hasConceptScore W4310608760C2778780117 @default.
- W4310608760 hasConceptScore W4310608760C2779530757 @default.
- W4310608760 hasConceptScore W4310608760C2780451532 @default.
- W4310608760 hasConceptScore W4310608760C41008148 @default.
- W4310608760 hasConceptScore W4310608760C41895202 @default.
- W4310608760 hasConceptScore W4310608760C511192102 @default.
- W4310608760 hasConceptScore W4310608760C554936623 @default.
- W4310608760 hasFunder F4320335787 @default.
- W4310608760 hasLocation W43106087601 @default.
- W4310608760 hasOpenAccess W4310608760 @default.
- W4310608760 hasPrimaryLocation W43106087601 @default.
- W4310608760 hasRelatedWork W1985822707 @default.
- W4310608760 hasRelatedWork W1987625450 @default.
- W4310608760 hasRelatedWork W2092067472 @default.
- W4310608760 hasRelatedWork W2603532711 @default.
- W4310608760 hasRelatedWork W2782553746 @default.
- W4310608760 hasRelatedWork W2808415040 @default.
- W4310608760 hasRelatedWork W2898238898 @default.
- W4310608760 hasRelatedWork W3032797759 @default.
- W4310608760 hasRelatedWork W3201358392 @default.
- W4310608760 hasRelatedWork W4206659163 @default.
- W4310608760 isParatext "false" @default.
- W4310608760 isRetracted "false" @default.
- W4310608760 workType "article" @default.