Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310609206> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4310609206 abstract "Accurate prediction of high- and low-grade gliomas is of great importance for making appropriate treatment plans. Although existing Radiomics and deep learning-based methods can predict glioma grade accurately with magnetic resonance (MR) images, most of them require prior segmentation of the tumors, leading to additional annotation required to build a computer-aided diagnosis system and making its application more difficult. To deal with such issue, we propose a cross-fusion network (CFNet) for classifying high- and low-grade gliomas, which fully incorporates the multiple transformation information of each single-sequence imaging data and uses the cross-fusion module to fuse multi-sequence MR image features. The fused features are fed into a classifier to predict the grade. The experimental results show that the AUC of CFNet for predicting high- and low-grade gliomas without tumor segmentation can reach 0.9769, which increases the prediction accuracy and sensitivity by 3.0% and 11.5%, respectively, compared with the state-of-the-art deep learning models. Meanwhile, the ablation experiments demonstrate that the proposed cross fusion module and multiple transformation fusion module can effectively improve the prediction performance, which is beneficial for personalized treatment of glioma." @default.
- W4310609206 created "2022-12-13" @default.
- W4310609206 creator A5005766672 @default.
- W4310609206 creator A5025091837 @default.
- W4310609206 creator A5063417182 @default.
- W4310609206 creator A5068102291 @default.
- W4310609206 creator A5072404159 @default.
- W4310609206 creator A5082245617 @default.
- W4310609206 date "2022-10-21" @default.
- W4310609206 modified "2023-09-26" @default.
- W4310609206 title "Glioma grade prediction using a cross-fusion network based on unsegmented multi-sequence magnetic resonance images" @default.
- W4310609206 cites W1641498739 @default.
- W4310609206 cites W1987780785 @default.
- W4310609206 cites W2083927153 @default.
- W4310609206 cites W2106209651 @default.
- W4310609206 cites W2128739912 @default.
- W4310609206 cites W2133865472 @default.
- W4310609206 cites W2194775991 @default.
- W4310609206 cites W2543050677 @default.
- W4310609206 cites W2594020746 @default.
- W4310609206 cites W2885006767 @default.
- W4310609206 cites W2901381629 @default.
- W4310609206 cites W2928165649 @default.
- W4310609206 cites W2963125010 @default.
- W4310609206 cites W2964350391 @default.
- W4310609206 cites W2982083293 @default.
- W4310609206 cites W3017621176 @default.
- W4310609206 cites W3036691346 @default.
- W4310609206 cites W3127071755 @default.
- W4310609206 cites W3152765238 @default.
- W4310609206 cites W3190587719 @default.
- W4310609206 doi "https://doi.org/10.1109/icsp56322.2022.9965327" @default.
- W4310609206 hasPublicationYear "2022" @default.
- W4310609206 type Work @default.
- W4310609206 citedByCount "0" @default.
- W4310609206 crossrefType "proceedings-article" @default.
- W4310609206 hasAuthorship W4310609206A5005766672 @default.
- W4310609206 hasAuthorship W4310609206A5025091837 @default.
- W4310609206 hasAuthorship W4310609206A5063417182 @default.
- W4310609206 hasAuthorship W4310609206A5068102291 @default.
- W4310609206 hasAuthorship W4310609206A5072404159 @default.
- W4310609206 hasAuthorship W4310609206A5082245617 @default.
- W4310609206 hasConcept C108583219 @default.
- W4310609206 hasConcept C119599485 @default.
- W4310609206 hasConcept C127413603 @default.
- W4310609206 hasConcept C138885662 @default.
- W4310609206 hasConcept C141353440 @default.
- W4310609206 hasConcept C153180895 @default.
- W4310609206 hasConcept C154945302 @default.
- W4310609206 hasConcept C158525013 @default.
- W4310609206 hasConcept C2778227246 @default.
- W4310609206 hasConcept C41008148 @default.
- W4310609206 hasConcept C41895202 @default.
- W4310609206 hasConcept C502942594 @default.
- W4310609206 hasConcept C86803240 @default.
- W4310609206 hasConcept C89600930 @default.
- W4310609206 hasConcept C95623464 @default.
- W4310609206 hasConceptScore W4310609206C108583219 @default.
- W4310609206 hasConceptScore W4310609206C119599485 @default.
- W4310609206 hasConceptScore W4310609206C127413603 @default.
- W4310609206 hasConceptScore W4310609206C138885662 @default.
- W4310609206 hasConceptScore W4310609206C141353440 @default.
- W4310609206 hasConceptScore W4310609206C153180895 @default.
- W4310609206 hasConceptScore W4310609206C154945302 @default.
- W4310609206 hasConceptScore W4310609206C158525013 @default.
- W4310609206 hasConceptScore W4310609206C2778227246 @default.
- W4310609206 hasConceptScore W4310609206C41008148 @default.
- W4310609206 hasConceptScore W4310609206C41895202 @default.
- W4310609206 hasConceptScore W4310609206C502942594 @default.
- W4310609206 hasConceptScore W4310609206C86803240 @default.
- W4310609206 hasConceptScore W4310609206C89600930 @default.
- W4310609206 hasConceptScore W4310609206C95623464 @default.
- W4310609206 hasFunder F4320330944 @default.
- W4310609206 hasLocation W43106092061 @default.
- W4310609206 hasOpenAccess W4310609206 @default.
- W4310609206 hasPrimaryLocation W43106092061 @default.
- W4310609206 hasRelatedWork W2773120646 @default.
- W4310609206 hasRelatedWork W2948658236 @default.
- W4310609206 hasRelatedWork W2960184797 @default.
- W4310609206 hasRelatedWork W3208028783 @default.
- W4310609206 hasRelatedWork W4200477060 @default.
- W4310609206 hasRelatedWork W4220708658 @default.
- W4310609206 hasRelatedWork W4243168368 @default.
- W4310609206 hasRelatedWork W4293211451 @default.
- W4310609206 hasRelatedWork W4295036012 @default.
- W4310609206 hasRelatedWork W564581980 @default.
- W4310609206 isParatext "false" @default.
- W4310609206 isRetracted "false" @default.
- W4310609206 workType "article" @default.