Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310609404> ?p ?o ?g. }
- W4310609404 abstract "Scene text recognition (STR) is a task of identifying text from natural scene text images. Recently, based on the advantages of self-supervised contrastive learning, some studies incorporate contrastive learning strategies for STR task. However, these studies mainly focus on data argumentation of images from a visual perspective, ignoring the fact that scene text often contains large noise and has the characteristics of diversity. For addressing this issue, in this paper, we propose a text-level contrastive learning strategy to learn a better representation of text in scene text images to effectively improve the prediction performance of STR task. We perform extensive experiments on several public benchmark datasets and compare with baseline models, and the experimental results demonstrate the effectiveness of our method." @default.
- W4310609404 created "2022-12-13" @default.
- W4310609404 creator A5004135809 @default.
- W4310609404 creator A5006643366 @default.
- W4310609404 creator A5049678396 @default.
- W4310609404 creator A5079738340 @default.
- W4310609404 date "2022-10-27" @default.
- W4310609404 modified "2023-09-23" @default.
- W4310609404 title "Text-Level Contrastive Learning for Scene Text Recognition" @default.
- W4310609404 cites W1922126009 @default.
- W4310609404 cites W1971822075 @default.
- W4310609404 cites W2008806374 @default.
- W4310609404 cites W2127141656 @default.
- W4310609404 cites W2144554289 @default.
- W4310609404 cites W2146835493 @default.
- W4310609404 cites W2194187530 @default.
- W4310609404 cites W2194775991 @default.
- W4310609404 cites W2294053032 @default.
- W4310609404 cites W2343052201 @default.
- W4310609404 cites W2593572697 @default.
- W4310609404 cites W2750938222 @default.
- W4310609404 cites W2788069964 @default.
- W4310609404 cites W2809273748 @default.
- W4310609404 cites W2810983211 @default.
- W4310609404 cites W2888894220 @default.
- W4310609404 cites W2963526661 @default.
- W4310609404 cites W2965066169 @default.
- W4310609404 cites W2988326850 @default.
- W4310609404 cites W2998382406 @default.
- W4310609404 cites W3003642782 @default.
- W4310609404 cites W3034447740 @default.
- W4310609404 cites W3035449864 @default.
- W4310609404 cites W3110267192 @default.
- W4310609404 cites W3156636935 @default.
- W4310609404 cites W3175618949 @default.
- W4310609404 cites W3175855397 @default.
- W4310609404 cites W3181186176 @default.
- W4310609404 cites W3202415716 @default.
- W4310609404 cites W4229030834 @default.
- W4310609404 cites W4283805255 @default.
- W4310609404 cites W4283819468 @default.
- W4310609404 doi "https://doi.org/10.1109/ialp57159.2022.9961322" @default.
- W4310609404 hasPublicationYear "2022" @default.
- W4310609404 type Work @default.
- W4310609404 citedByCount "1" @default.
- W4310609404 countsByYear W43106094042023 @default.
- W4310609404 crossrefType "proceedings-article" @default.
- W4310609404 hasAuthorship W4310609404A5004135809 @default.
- W4310609404 hasAuthorship W4310609404A5006643366 @default.
- W4310609404 hasAuthorship W4310609404A5049678396 @default.
- W4310609404 hasAuthorship W4310609404A5079738340 @default.
- W4310609404 hasConcept C111368507 @default.
- W4310609404 hasConcept C120665830 @default.
- W4310609404 hasConcept C121332964 @default.
- W4310609404 hasConcept C12713177 @default.
- W4310609404 hasConcept C12725497 @default.
- W4310609404 hasConcept C127313418 @default.
- W4310609404 hasConcept C13280743 @default.
- W4310609404 hasConcept C138885662 @default.
- W4310609404 hasConcept C154945302 @default.
- W4310609404 hasConcept C162324750 @default.
- W4310609404 hasConcept C17744445 @default.
- W4310609404 hasConcept C185798385 @default.
- W4310609404 hasConcept C187736073 @default.
- W4310609404 hasConcept C192209626 @default.
- W4310609404 hasConcept C199539241 @default.
- W4310609404 hasConcept C204321447 @default.
- W4310609404 hasConcept C205649164 @default.
- W4310609404 hasConcept C2776359362 @default.
- W4310609404 hasConcept C2780451532 @default.
- W4310609404 hasConcept C41008148 @default.
- W4310609404 hasConcept C41895202 @default.
- W4310609404 hasConcept C65059942 @default.
- W4310609404 hasConcept C94625758 @default.
- W4310609404 hasConceptScore W4310609404C111368507 @default.
- W4310609404 hasConceptScore W4310609404C120665830 @default.
- W4310609404 hasConceptScore W4310609404C121332964 @default.
- W4310609404 hasConceptScore W4310609404C12713177 @default.
- W4310609404 hasConceptScore W4310609404C12725497 @default.
- W4310609404 hasConceptScore W4310609404C127313418 @default.
- W4310609404 hasConceptScore W4310609404C13280743 @default.
- W4310609404 hasConceptScore W4310609404C138885662 @default.
- W4310609404 hasConceptScore W4310609404C154945302 @default.
- W4310609404 hasConceptScore W4310609404C162324750 @default.
- W4310609404 hasConceptScore W4310609404C17744445 @default.
- W4310609404 hasConceptScore W4310609404C185798385 @default.
- W4310609404 hasConceptScore W4310609404C187736073 @default.
- W4310609404 hasConceptScore W4310609404C192209626 @default.
- W4310609404 hasConceptScore W4310609404C199539241 @default.
- W4310609404 hasConceptScore W4310609404C204321447 @default.
- W4310609404 hasConceptScore W4310609404C205649164 @default.
- W4310609404 hasConceptScore W4310609404C2776359362 @default.
- W4310609404 hasConceptScore W4310609404C2780451532 @default.
- W4310609404 hasConceptScore W4310609404C41008148 @default.
- W4310609404 hasConceptScore W4310609404C41895202 @default.
- W4310609404 hasConceptScore W4310609404C65059942 @default.
- W4310609404 hasConceptScore W4310609404C94625758 @default.
- W4310609404 hasFunder F4320321001 @default.
- W4310609404 hasLocation W43106094041 @default.
- W4310609404 hasOpenAccess W4310609404 @default.