Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310621567> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4310621567 abstract "Nowadays classification has become one of the most common techniques in machine learning. In classification, there are two types of data; single-label and multi-label. In multilabel datasets, one sample can have multiple labels at the same time. In recent years, classification of multi-label data has gained a lot of attention. Multi-label classification algorithms can be divided into 3 main parts: problem transformation methods, algorithm adaptation methods and ensemble methods. In problem transformation methods, classification of multi-label data is transformed to other fields. In algorithm adaptation methods, common single-label classification algorithms are changed so that they can deal with multi-label data. In third category, algorithms of two previous categories are combined together. Despite of many different proposed algorithms in this field, improvement of methods in terms of evaluation metrics has always been a challenge. Also, there is a lack of systems which can self-improve the base classifier. Thus, in this paper we try to present a novel ensemble system which can improve any classifier. The presented system has a novel structure which consists of two tree ensembles and each one has its own specific function. One of them has the task of removing noisy and outlier data with a novel approach and the other one has the task of removing noisy and redundant features. In one group some random samples are selected and in the other one, some random features are selected. If the evaluation metrics of the created child are improved, the algorithm can go to the next step and create its own child and if not, the parents create another child. Lastly, the results of these groups are combined together. The conducted experiments on 10 various datasets and 5 evaluation metrics show the superiority of the proposed method." @default.
- W4310621567 created "2022-12-13" @default.
- W4310621567 creator A5005421427 @default.
- W4310621567 creator A5050964312 @default.
- W4310621567 date "2022-11-17" @default.
- W4310621567 modified "2023-09-27" @default.
- W4310621567 title "Improving performance of multi-label classification using ensemble of feature selection and outlier detection" @default.
- W4310621567 cites W1753402186 @default.
- W4310621567 cites W1990519701 @default.
- W4310621567 cites W1999954155 @default.
- W4310621567 cites W2052684427 @default.
- W4310621567 cites W2063249739 @default.
- W4310621567 cites W2087347434 @default.
- W4310621567 cites W2096086009 @default.
- W4310621567 cites W2164308541 @default.
- W4310621567 cites W2908789301 @default.
- W4310621567 cites W2966533837 @default.
- W4310621567 cites W2981142240 @default.
- W4310621567 cites W2982208318 @default.
- W4310621567 cites W3011149291 @default.
- W4310621567 cites W3036562957 @default.
- W4310621567 cites W3048192479 @default.
- W4310621567 cites W3095676075 @default.
- W4310621567 cites W3140459407 @default.
- W4310621567 cites W3158777740 @default.
- W4310621567 cites W3167901719 @default.
- W4310621567 cites W3177389962 @default.
- W4310621567 cites W3193721567 @default.
- W4310621567 cites W4200324364 @default.
- W4310621567 cites W4211256381 @default.
- W4310621567 cites W4214697916 @default.
- W4310621567 cites W4283369267 @default.
- W4310621567 cites W4289705411 @default.
- W4310621567 doi "https://doi.org/10.1109/iccke57176.2022.9960003" @default.
- W4310621567 hasPublicationYear "2022" @default.
- W4310621567 type Work @default.
- W4310621567 citedByCount "0" @default.
- W4310621567 crossrefType "proceedings-article" @default.
- W4310621567 hasAuthorship W4310621567A5005421427 @default.
- W4310621567 hasAuthorship W4310621567A5050964312 @default.
- W4310621567 hasConcept C110083411 @default.
- W4310621567 hasConcept C119857082 @default.
- W4310621567 hasConcept C124101348 @default.
- W4310621567 hasConcept C148483581 @default.
- W4310621567 hasConcept C153180895 @default.
- W4310621567 hasConcept C154945302 @default.
- W4310621567 hasConcept C169258074 @default.
- W4310621567 hasConcept C2776482837 @default.
- W4310621567 hasConcept C34872919 @default.
- W4310621567 hasConcept C41008148 @default.
- W4310621567 hasConcept C79337645 @default.
- W4310621567 hasConcept C95623464 @default.
- W4310621567 hasConceptScore W4310621567C110083411 @default.
- W4310621567 hasConceptScore W4310621567C119857082 @default.
- W4310621567 hasConceptScore W4310621567C124101348 @default.
- W4310621567 hasConceptScore W4310621567C148483581 @default.
- W4310621567 hasConceptScore W4310621567C153180895 @default.
- W4310621567 hasConceptScore W4310621567C154945302 @default.
- W4310621567 hasConceptScore W4310621567C169258074 @default.
- W4310621567 hasConceptScore W4310621567C2776482837 @default.
- W4310621567 hasConceptScore W4310621567C34872919 @default.
- W4310621567 hasConceptScore W4310621567C41008148 @default.
- W4310621567 hasConceptScore W4310621567C79337645 @default.
- W4310621567 hasConceptScore W4310621567C95623464 @default.
- W4310621567 hasLocation W43106215671 @default.
- W4310621567 hasOpenAccess W4310621567 @default.
- W4310621567 hasPrimaryLocation W43106215671 @default.
- W4310621567 hasRelatedWork W2027673805 @default.
- W4310621567 hasRelatedWork W2055939299 @default.
- W4310621567 hasRelatedWork W2275058042 @default.
- W4310621567 hasRelatedWork W2889702990 @default.
- W4310621567 hasRelatedWork W2964383635 @default.
- W4310621567 hasRelatedWork W3174196512 @default.
- W4310621567 hasRelatedWork W3210877509 @default.
- W4310621567 hasRelatedWork W4212852473 @default.
- W4310621567 hasRelatedWork W4225360065 @default.
- W4310621567 hasRelatedWork W4282839226 @default.
- W4310621567 isParatext "false" @default.
- W4310621567 isRetracted "false" @default.
- W4310621567 workType "article" @default.