Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310621818> ?p ?o ?g. }
- W4310621818 abstract "Abstract Due to population growth in recent years and climate change in arid and semi-arid regions, the lack of rainfall and the reduction of surface water flows required in various sectors, monitoring and projection of the climate change impact on the Groundwater Level (GWL) in the future is vital in the management and control of these resources. The purpose of this study is the projection of climate change impact on the GWL fluctuations in the Mashhad aquifer during the future period (2022-2064). In the first step, the climatic variables using ACCESS-CM2 under the Shared Socio-economic Pathways (SSPs) 5-8.5 scenario from the CMIP6 model were extracted. We used the CMhyd model to downscale the climatic data from the GCMs model. In the second step, different machine learning algorithms, including Multilayer Perceptron Neural Network ( MLP), Adaptive Neuro-fuzzy Inference System Neutral Network ( ANFIS), Radial Basis Function Neural Network ( RBF), and Support Vector Machine (SVM) were used to predict the GWL fluctuations under climate change in the future period. Our results point out that temperatures and evaporation will increase in the autumn season, and precipitation will decrease by 26% in the future in the Mashhad aquifer. The results showed that the RBF model was an excellent performance in predicting GWL compared to other models. Based on the result of the RBF model, the GWL will decrease by 6.60 meters under the SSP5-8.5 scenario in the future. The findings of this research have a practical role in making helpful groundwater resources management decisions." @default.
- W4310621818 created "2022-12-13" @default.
- W4310621818 creator A5033067200 @default.
- W4310621818 creator A5046998811 @default.
- W4310621818 creator A5069395703 @default.
- W4310621818 creator A5090494134 @default.
- W4310621818 creator A5091194813 @default.
- W4310621818 date "2022-12-03" @default.
- W4310621818 modified "2023-09-23" @default.
- W4310621818 title "Projection of Groundwater Level Fluctuations Using Different Machine Learning Algorithms under Climate Change in the Mashhad Aquifer, Iran" @default.
- W4310621818 cites W1942079909 @default.
- W4310621818 cites W1982970543 @default.
- W4310621818 cites W2000121350 @default.
- W4310621818 cites W2019207321 @default.
- W4310621818 cites W2020881868 @default.
- W4310621818 cites W2041658927 @default.
- W4310621818 cites W2043910231 @default.
- W4310621818 cites W2063945491 @default.
- W4310621818 cites W2083029259 @default.
- W4310621818 cites W2136402371 @default.
- W4310621818 cites W2137811904 @default.
- W4310621818 cites W2216845620 @default.
- W4310621818 cites W2519924701 @default.
- W4310621818 cites W2571212220 @default.
- W4310621818 cites W2626338612 @default.
- W4310621818 cites W2742211115 @default.
- W4310621818 cites W2767803110 @default.
- W4310621818 cites W2772544101 @default.
- W4310621818 cites W2788145008 @default.
- W4310621818 cites W2795084593 @default.
- W4310621818 cites W2800100437 @default.
- W4310621818 cites W2800113701 @default.
- W4310621818 cites W2800330446 @default.
- W4310621818 cites W2802674596 @default.
- W4310621818 cites W2892334939 @default.
- W4310621818 cites W2893082324 @default.
- W4310621818 cites W2907891425 @default.
- W4310621818 cites W2940190263 @default.
- W4310621818 cites W2944008221 @default.
- W4310621818 cites W2951312449 @default.
- W4310621818 cites W2953540816 @default.
- W4310621818 cites W2964072122 @default.
- W4310621818 cites W2993079219 @default.
- W4310621818 cites W3006483131 @default.
- W4310621818 cites W3012522385 @default.
- W4310621818 cites W3014210854 @default.
- W4310621818 cites W3021562645 @default.
- W4310621818 cites W3024514109 @default.
- W4310621818 cites W3025822585 @default.
- W4310621818 cites W3032813163 @default.
- W4310621818 cites W3039339548 @default.
- W4310621818 cites W3082813113 @default.
- W4310621818 cites W3087029213 @default.
- W4310621818 cites W3092223550 @default.
- W4310621818 cites W3092626163 @default.
- W4310621818 cites W3096804250 @default.
- W4310621818 cites W3125916159 @default.
- W4310621818 cites W3127148673 @default.
- W4310621818 cites W3134095386 @default.
- W4310621818 cites W3167785258 @default.
- W4310621818 cites W3187721090 @default.
- W4310621818 cites W3190677313 @default.
- W4310621818 cites W3210125786 @default.
- W4310621818 cites W3212514925 @default.
- W4310621818 cites W4200023970 @default.
- W4310621818 cites W4206948839 @default.
- W4310621818 cites W4210849472 @default.
- W4310621818 cites W4220732246 @default.
- W4310621818 cites W4220926817 @default.
- W4310621818 cites W4236782804 @default.
- W4310621818 cites W4245910711 @default.
- W4310621818 cites W4281260991 @default.
- W4310621818 cites W4283703608 @default.
- W4310621818 cites W4300419762 @default.
- W4310621818 doi "https://doi.org/10.21203/rs.3.rs-2319553/v1" @default.
- W4310621818 hasPublicationYear "2022" @default.
- W4310621818 type Work @default.
- W4310621818 citedByCount "0" @default.
- W4310621818 crossrefType "posted-content" @default.
- W4310621818 hasAuthorship W4310621818A5033067200 @default.
- W4310621818 hasAuthorship W4310621818A5046998811 @default.
- W4310621818 hasAuthorship W4310621818A5069395703 @default.
- W4310621818 hasAuthorship W4310621818A5090494134 @default.
- W4310621818 hasAuthorship W4310621818A5091194813 @default.
- W4310621818 hasBestOaLocation W43106218181 @default.
- W4310621818 hasConcept C107054158 @default.
- W4310621818 hasConcept C111368507 @default.
- W4310621818 hasConcept C11413529 @default.
- W4310621818 hasConcept C119857082 @default.
- W4310621818 hasConcept C12267149 @default.
- W4310621818 hasConcept C127313418 @default.
- W4310621818 hasConcept C127413603 @default.
- W4310621818 hasConcept C132651083 @default.
- W4310621818 hasConcept C150772632 @default.
- W4310621818 hasConcept C151730666 @default.
- W4310621818 hasConcept C153294291 @default.
- W4310621818 hasConcept C153823671 @default.
- W4310621818 hasConcept C154945302 @default.
- W4310621818 hasConcept C179717631 @default.
- W4310621818 hasConcept C186108316 @default.