Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310631282> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4310631282 abstract "To satisfy the expected plethora of computation-heavy applications, federated edge learning (FEEL) is a new paradigm featuring distributed learning to carry the capacities of low-latency and privacy-preserving. To further improve the efficiency of wireless data aggregation and model learning, over-the-air computation (AirComp) is emerging as a promising solution by using the superposition characteristics of wireless channels. However, the fading and noise of wireless channels can cause aggregate distortions in AirComp enabled federated learning. In addition, the quality of collected data and energy consumption of edge devices may also impact the accuracy and efficiency of model aggregation as well as convergence. To solve these problems, this work proposes a dynamic device scheduling mechanism, which can select qualified edge devices to transmit their local models with a proper power control policy so as to participate the model training at the server in federated learning via AirComp. In this mechanism, the data importance is measured by the gradient of local model parameter, channel condition and energy consumption of the device jointly. In particular, to fully use distributed datasets and accelerate the convergence rate of federated learning, the local updates of unselected devices are also retained and accumulated for future potential transmission, instead of being discarded directly. Furthermore, the Lyapunov drift-plus-penalty optimization problem is formulated for searching the optimal device selection strategy. Simulation results validate that the proposed scheduling mechanism can achieve higher test accuracy and faster convergence rate, and is robust against different channel conditions." @default.
- W4310631282 created "2022-12-13" @default.
- W4310631282 creator A5005072193 @default.
- W4310631282 creator A5022499594 @default.
- W4310631282 creator A5058814917 @default.
- W4310631282 creator A5062270998 @default.
- W4310631282 creator A5063667378 @default.
- W4310631282 date "2022-12-01" @default.
- W4310631282 modified "2023-10-18" @default.
- W4310631282 title "Gradient and Channel Aware Dynamic Scheduling for Over-the-Air Computation in Federated Edge Learning Systems" @default.
- W4310631282 doi "https://doi.org/10.48550/arxiv.2212.00491" @default.
- W4310631282 hasPublicationYear "2022" @default.
- W4310631282 type Work @default.
- W4310631282 citedByCount "0" @default.
- W4310631282 crossrefType "posted-content" @default.
- W4310631282 hasAuthorship W4310631282A5005072193 @default.
- W4310631282 hasAuthorship W4310631282A5022499594 @default.
- W4310631282 hasAuthorship W4310631282A5058814917 @default.
- W4310631282 hasAuthorship W4310631282A5062270998 @default.
- W4310631282 hasAuthorship W4310631282A5063667378 @default.
- W4310631282 hasBestOaLocation W43106312821 @default.
- W4310631282 hasConcept C111919701 @default.
- W4310631282 hasConcept C11413529 @default.
- W4310631282 hasConcept C120314980 @default.
- W4310631282 hasConcept C126255220 @default.
- W4310631282 hasConcept C127162648 @default.
- W4310631282 hasConcept C138236772 @default.
- W4310631282 hasConcept C154945302 @default.
- W4310631282 hasConcept C18903297 @default.
- W4310631282 hasConcept C206729178 @default.
- W4310631282 hasConcept C2780165032 @default.
- W4310631282 hasConcept C31258907 @default.
- W4310631282 hasConcept C33923547 @default.
- W4310631282 hasConcept C41008148 @default.
- W4310631282 hasConcept C45374587 @default.
- W4310631282 hasConcept C555944384 @default.
- W4310631282 hasConcept C76155785 @default.
- W4310631282 hasConcept C79974875 @default.
- W4310631282 hasConcept C81978471 @default.
- W4310631282 hasConcept C86803240 @default.
- W4310631282 hasConcept C97541855 @default.
- W4310631282 hasConceptScore W4310631282C111919701 @default.
- W4310631282 hasConceptScore W4310631282C11413529 @default.
- W4310631282 hasConceptScore W4310631282C120314980 @default.
- W4310631282 hasConceptScore W4310631282C126255220 @default.
- W4310631282 hasConceptScore W4310631282C127162648 @default.
- W4310631282 hasConceptScore W4310631282C138236772 @default.
- W4310631282 hasConceptScore W4310631282C154945302 @default.
- W4310631282 hasConceptScore W4310631282C18903297 @default.
- W4310631282 hasConceptScore W4310631282C206729178 @default.
- W4310631282 hasConceptScore W4310631282C2780165032 @default.
- W4310631282 hasConceptScore W4310631282C31258907 @default.
- W4310631282 hasConceptScore W4310631282C33923547 @default.
- W4310631282 hasConceptScore W4310631282C41008148 @default.
- W4310631282 hasConceptScore W4310631282C45374587 @default.
- W4310631282 hasConceptScore W4310631282C555944384 @default.
- W4310631282 hasConceptScore W4310631282C76155785 @default.
- W4310631282 hasConceptScore W4310631282C79974875 @default.
- W4310631282 hasConceptScore W4310631282C81978471 @default.
- W4310631282 hasConceptScore W4310631282C86803240 @default.
- W4310631282 hasConceptScore W4310631282C97541855 @default.
- W4310631282 hasLocation W43106312821 @default.
- W4310631282 hasLocation W43106312822 @default.
- W4310631282 hasOpenAccess W4310631282 @default.
- W4310631282 hasPrimaryLocation W43106312821 @default.
- W4310631282 hasRelatedWork W1882733036 @default.
- W4310631282 hasRelatedWork W1992741870 @default.
- W4310631282 hasRelatedWork W1998123430 @default.
- W4310631282 hasRelatedWork W2160425906 @default.
- W4310631282 hasRelatedWork W2546696010 @default.
- W4310631282 hasRelatedWork W2786808640 @default.
- W4310631282 hasRelatedWork W2889222875 @default.
- W4310631282 hasRelatedWork W3039103361 @default.
- W4310631282 hasRelatedWork W3192160111 @default.
- W4310631282 hasRelatedWork W4386214771 @default.
- W4310631282 isParatext "false" @default.
- W4310631282 isRetracted "false" @default.
- W4310631282 workType "article" @default.