Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310632858> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4310632858 abstract "The spectral and scattering properties of non-selfadjoint problems pose a mathematical challenge. Apart from exceptional cases, the well-developed methods used to examine the spectrum of selfadjoint problems are not applicable. One of the tools to attack non-selfadjoint problems are functional models. A drawback of many functional models is that their constructions require objects which may be difficult to describe explicitly, such as operator square roots, making it hard to apply the results to specific examples. We develop a functional model for the case when the non-selfadjointness arises both in additive terms and in the boundary conditions which is based on the Lagrange identity. The flexibility of the choice of the $Gamma$-operators in the Lagrange identity means that these can be chosen so that expressions arising in the model are given explicitly in terms of physical parameters (coefficients, boundary conditions and Titchmarsh-Weyl $M$-function) of the maximally dissipative operator. The presentation of such explicit expressions for the spectral form of the functional model is arguably the main contribution of the present paper. In the spectral form of the functional model, the selfadjoint dilation is very simple, being the operator of multiplication by an independent variable in some auxiliary vector-valued function space. We also obtain an explicit expression for the completely non-selfadjoint part of the operator and an operator-analytic proof of the famous result by Sz.-Nagy-Foias on the pure absolute continuity of the spectrum of the minimal selfadjoint dilation. Finally, we consider an example of a limit circle Sturm-Liouville operator." @default.
- W4310632858 created "2022-12-13" @default.
- W4310632858 creator A5039382364 @default.
- W4310632858 creator A5040616657 @default.
- W4310632858 creator A5078100960 @default.
- W4310632858 creator A5085209476 @default.
- W4310632858 date "2022-12-01" @default.
- W4310632858 modified "2023-10-16" @default.
- W4310632858 title "The spectral form of the functional model for maximally dissipative operators: A Lagrange identity approach" @default.
- W4310632858 doi "https://doi.org/10.48550/arxiv.2212.00708" @default.
- W4310632858 hasPublicationYear "2022" @default.
- W4310632858 type Work @default.
- W4310632858 citedByCount "0" @default.
- W4310632858 crossrefType "posted-content" @default.
- W4310632858 hasAuthorship W4310632858A5039382364 @default.
- W4310632858 hasAuthorship W4310632858A5040616657 @default.
- W4310632858 hasAuthorship W4310632858A5078100960 @default.
- W4310632858 hasAuthorship W4310632858A5085209476 @default.
- W4310632858 hasBestOaLocation W43106328581 @default.
- W4310632858 hasConcept C101370240 @default.
- W4310632858 hasConcept C104317684 @default.
- W4310632858 hasConcept C121332964 @default.
- W4310632858 hasConcept C134306372 @default.
- W4310632858 hasConcept C14036430 @default.
- W4310632858 hasConcept C156778621 @default.
- W4310632858 hasConcept C158448853 @default.
- W4310632858 hasConcept C17020691 @default.
- W4310632858 hasConcept C182310444 @default.
- W4310632858 hasConcept C185592680 @default.
- W4310632858 hasConcept C202444582 @default.
- W4310632858 hasConcept C28826006 @default.
- W4310632858 hasConcept C33923547 @default.
- W4310632858 hasConcept C55493867 @default.
- W4310632858 hasConcept C62354387 @default.
- W4310632858 hasConcept C62520636 @default.
- W4310632858 hasConcept C62799726 @default.
- W4310632858 hasConcept C78458016 @default.
- W4310632858 hasConcept C82916341 @default.
- W4310632858 hasConcept C86339819 @default.
- W4310632858 hasConcept C86803240 @default.
- W4310632858 hasConcept C99692599 @default.
- W4310632858 hasConceptScore W4310632858C101370240 @default.
- W4310632858 hasConceptScore W4310632858C104317684 @default.
- W4310632858 hasConceptScore W4310632858C121332964 @default.
- W4310632858 hasConceptScore W4310632858C134306372 @default.
- W4310632858 hasConceptScore W4310632858C14036430 @default.
- W4310632858 hasConceptScore W4310632858C156778621 @default.
- W4310632858 hasConceptScore W4310632858C158448853 @default.
- W4310632858 hasConceptScore W4310632858C17020691 @default.
- W4310632858 hasConceptScore W4310632858C182310444 @default.
- W4310632858 hasConceptScore W4310632858C185592680 @default.
- W4310632858 hasConceptScore W4310632858C202444582 @default.
- W4310632858 hasConceptScore W4310632858C28826006 @default.
- W4310632858 hasConceptScore W4310632858C33923547 @default.
- W4310632858 hasConceptScore W4310632858C55493867 @default.
- W4310632858 hasConceptScore W4310632858C62354387 @default.
- W4310632858 hasConceptScore W4310632858C62520636 @default.
- W4310632858 hasConceptScore W4310632858C62799726 @default.
- W4310632858 hasConceptScore W4310632858C78458016 @default.
- W4310632858 hasConceptScore W4310632858C82916341 @default.
- W4310632858 hasConceptScore W4310632858C86339819 @default.
- W4310632858 hasConceptScore W4310632858C86803240 @default.
- W4310632858 hasConceptScore W4310632858C99692599 @default.
- W4310632858 hasLocation W43106328581 @default.
- W4310632858 hasLocation W43106328582 @default.
- W4310632858 hasOpenAccess W4310632858 @default.
- W4310632858 hasPrimaryLocation W43106328581 @default.
- W4310632858 hasRelatedWork W1044314746 @default.
- W4310632858 hasRelatedWork W1968718268 @default.
- W4310632858 hasRelatedWork W1977983175 @default.
- W4310632858 hasRelatedWork W2108489316 @default.
- W4310632858 hasRelatedWork W2370725113 @default.
- W4310632858 hasRelatedWork W2788108774 @default.
- W4310632858 hasRelatedWork W2798713178 @default.
- W4310632858 hasRelatedWork W2964072900 @default.
- W4310632858 hasRelatedWork W4291944121 @default.
- W4310632858 hasRelatedWork W4298010577 @default.
- W4310632858 isParatext "false" @default.
- W4310632858 isRetracted "false" @default.
- W4310632858 workType "article" @default.