Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310654958> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W4310654958 abstract "Deep learning is currently gaining a lot of attention in the field of optical metrology and has shown great potential in solving various optical metrology tasks such as fringe analysis, phase unwrapping, and hologram reconstruction. For fringe analysis, current major works use U-Net and its derivatives as the backbone of the deep learning network, but suffer from a large number of model parameters and computational redundancy of the U-Net network, which outputs low-precision prediction results while taking up a lot of GPU memory. To solve these problems, compared with U-Net, a lightweight fringe analysis network with the size of only 1.7G is proposed to reduce the memory usage by over 70%, while improving the accuracy of phase retrieval by 10%, providing a new path for the widespread implementation in mobile devices of deep learning-based optical metrology." @default.
- W4310654958 created "2022-12-14" @default.
- W4310654958 creator A5015501339 @default.
- W4310654958 creator A5087339860 @default.
- W4310654958 date "2022-12-21" @default.
- W4310654958 modified "2023-09-23" @default.
- W4310654958 title "Fast 3D measurement based on fringe projection profilometry and deep learning" @default.
- W4310654958 doi "https://doi.org/10.1117/12.2642326" @default.
- W4310654958 hasPublicationYear "2022" @default.
- W4310654958 type Work @default.
- W4310654958 citedByCount "0" @default.
- W4310654958 crossrefType "proceedings-article" @default.
- W4310654958 hasAuthorship W4310654958A5015501339 @default.
- W4310654958 hasAuthorship W4310654958A5087339860 @default.
- W4310654958 hasConcept C108583219 @default.
- W4310654958 hasConcept C111919701 @default.
- W4310654958 hasConcept C113775141 @default.
- W4310654958 hasConcept C120665830 @default.
- W4310654958 hasConcept C121332964 @default.
- W4310654958 hasConcept C152124472 @default.
- W4310654958 hasConcept C154945302 @default.
- W4310654958 hasConcept C184577583 @default.
- W4310654958 hasConcept C187590223 @default.
- W4310654958 hasConcept C195766429 @default.
- W4310654958 hasConcept C2779751349 @default.
- W4310654958 hasConcept C31972630 @default.
- W4310654958 hasConcept C41008148 @default.
- W4310654958 hasConcept C48983235 @default.
- W4310654958 hasConceptScore W4310654958C108583219 @default.
- W4310654958 hasConceptScore W4310654958C111919701 @default.
- W4310654958 hasConceptScore W4310654958C113775141 @default.
- W4310654958 hasConceptScore W4310654958C120665830 @default.
- W4310654958 hasConceptScore W4310654958C121332964 @default.
- W4310654958 hasConceptScore W4310654958C152124472 @default.
- W4310654958 hasConceptScore W4310654958C154945302 @default.
- W4310654958 hasConceptScore W4310654958C184577583 @default.
- W4310654958 hasConceptScore W4310654958C187590223 @default.
- W4310654958 hasConceptScore W4310654958C195766429 @default.
- W4310654958 hasConceptScore W4310654958C2779751349 @default.
- W4310654958 hasConceptScore W4310654958C31972630 @default.
- W4310654958 hasConceptScore W4310654958C41008148 @default.
- W4310654958 hasConceptScore W4310654958C48983235 @default.
- W4310654958 hasLocation W43106549581 @default.
- W4310654958 hasOpenAccess W4310654958 @default.
- W4310654958 hasPrimaryLocation W43106549581 @default.
- W4310654958 hasRelatedWork W2137695006 @default.
- W4310654958 hasRelatedWork W2197810677 @default.
- W4310654958 hasRelatedWork W2288440639 @default.
- W4310654958 hasRelatedWork W2797945797 @default.
- W4310654958 hasRelatedWork W2798039613 @default.
- W4310654958 hasRelatedWork W2897307500 @default.
- W4310654958 hasRelatedWork W2949675731 @default.
- W4310654958 hasRelatedWork W2954718107 @default.
- W4310654958 hasRelatedWork W4310654958 @default.
- W4310654958 hasRelatedWork W795072109 @default.
- W4310654958 isParatext "false" @default.
- W4310654958 isRetracted "false" @default.
- W4310654958 workType "article" @default.