Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310658175> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4310658175 abstract "Microstructures are attracting academic and industrial interests with the rapid development of additive manufacturing. The numerical homogenization method has been well studied for analyzing mechanical behaviors of microstructures; however, it is too time-consuming to be applied to online computing or applications requiring high-frequency calling, e.g., topology optimization. Data-driven homogenization methods emerge as a more efficient choice but limit the microstructures into a cubic shape, which are infeasible to the periodic microstructures with a more general shape, e.g., parallelepiped. This paper introduces a fine-designed 3D convolutional neural network (CNN) for fast homogenization of parallel-shaped microstructures, named PH-Net. Superior to existing data-driven methods, PH-Net predicts the local displacements of microstructures under specified macroscope strains instead of direct homogeneous material, motivating us to present a label-free loss function based on minimal potential energy. For dataset construction, we introduce a shape-material transformation and voxel-material tensor to encode microstructure type,base material and boundary shape together as the input of PH-Net, such that it is CNN-friendly and enhances PH-Net on generalization in terms of microstructure type, base material, and boundary shape. PH-Net predicts homogenized properties with hundreds of acceleration compared to the numerical homogenization method and even supports online computing. Moreover, it does not require a labeled dataset and thus is much faster than current deep learning methods in training processing. Benefiting from predicting local displacement, PH-Net provides both homogeneous material properties and microscopic mechanical properties, e.g., strain and stress distribution, yield strength, etc. We design a group of physical experiments and verify the prediction accuracy of PH-Net." @default.
- W4310658175 created "2022-12-14" @default.
- W4310658175 creator A5001198088 @default.
- W4310658175 creator A5014867897 @default.
- W4310658175 creator A5027553598 @default.
- W4310658175 creator A5038982211 @default.
- W4310658175 creator A5059955448 @default.
- W4310658175 creator A5069093595 @default.
- W4310658175 date "2022-01-17" @default.
- W4310658175 modified "2023-10-17" @default.
- W4310658175 title "PH-Net: Parallelepiped Microstructure Homogenization via 3D Convolutional Neural Networks" @default.
- W4310658175 doi "https://doi.org/10.48550/arxiv.2201.09672" @default.
- W4310658175 hasPublicationYear "2022" @default.
- W4310658175 type Work @default.
- W4310658175 citedByCount "0" @default.
- W4310658175 crossrefType "posted-content" @default.
- W4310658175 hasAuthorship W4310658175A5001198088 @default.
- W4310658175 hasAuthorship W4310658175A5014867897 @default.
- W4310658175 hasAuthorship W4310658175A5027553598 @default.
- W4310658175 hasAuthorship W4310658175A5038982211 @default.
- W4310658175 hasAuthorship W4310658175A5059955448 @default.
- W4310658175 hasAuthorship W4310658175A5069093595 @default.
- W4310658175 hasBestOaLocation W43106581751 @default.
- W4310658175 hasConcept C112675119 @default.
- W4310658175 hasConcept C11413529 @default.
- W4310658175 hasConcept C130217890 @default.
- W4310658175 hasConcept C134306372 @default.
- W4310658175 hasConcept C154945302 @default.
- W4310658175 hasConcept C159985019 @default.
- W4310658175 hasConcept C182310444 @default.
- W4310658175 hasConcept C186060115 @default.
- W4310658175 hasConcept C18903297 @default.
- W4310658175 hasConcept C192562407 @default.
- W4310658175 hasConcept C2524010 @default.
- W4310658175 hasConcept C2778722038 @default.
- W4310658175 hasConcept C2779788511 @default.
- W4310658175 hasConcept C33923547 @default.
- W4310658175 hasConcept C41008148 @default.
- W4310658175 hasConcept C459310 @default.
- W4310658175 hasConcept C50644808 @default.
- W4310658175 hasConcept C81363708 @default.
- W4310658175 hasConcept C86803240 @default.
- W4310658175 hasConcept C87976508 @default.
- W4310658175 hasConceptScore W4310658175C112675119 @default.
- W4310658175 hasConceptScore W4310658175C11413529 @default.
- W4310658175 hasConceptScore W4310658175C130217890 @default.
- W4310658175 hasConceptScore W4310658175C134306372 @default.
- W4310658175 hasConceptScore W4310658175C154945302 @default.
- W4310658175 hasConceptScore W4310658175C159985019 @default.
- W4310658175 hasConceptScore W4310658175C182310444 @default.
- W4310658175 hasConceptScore W4310658175C186060115 @default.
- W4310658175 hasConceptScore W4310658175C18903297 @default.
- W4310658175 hasConceptScore W4310658175C192562407 @default.
- W4310658175 hasConceptScore W4310658175C2524010 @default.
- W4310658175 hasConceptScore W4310658175C2778722038 @default.
- W4310658175 hasConceptScore W4310658175C2779788511 @default.
- W4310658175 hasConceptScore W4310658175C33923547 @default.
- W4310658175 hasConceptScore W4310658175C41008148 @default.
- W4310658175 hasConceptScore W4310658175C459310 @default.
- W4310658175 hasConceptScore W4310658175C50644808 @default.
- W4310658175 hasConceptScore W4310658175C81363708 @default.
- W4310658175 hasConceptScore W4310658175C86803240 @default.
- W4310658175 hasConceptScore W4310658175C87976508 @default.
- W4310658175 hasLocation W43106581751 @default.
- W4310658175 hasLocation W43106581752 @default.
- W4310658175 hasOpenAccess W4310658175 @default.
- W4310658175 hasPrimaryLocation W43106581751 @default.
- W4310658175 hasRelatedWork W2001383604 @default.
- W4310658175 hasRelatedWork W2010804110 @default.
- W4310658175 hasRelatedWork W2058945371 @default.
- W4310658175 hasRelatedWork W2085154662 @default.
- W4310658175 hasRelatedWork W261067453 @default.
- W4310658175 hasRelatedWork W2913917158 @default.
- W4310658175 hasRelatedWork W2976749951 @default.
- W4310658175 hasRelatedWork W3028084479 @default.
- W4310658175 hasRelatedWork W3149232772 @default.
- W4310658175 hasRelatedWork W4313319758 @default.
- W4310658175 isParatext "false" @default.
- W4310658175 isRetracted "false" @default.
- W4310658175 workType "article" @default.