Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310664078> ?p ?o ?g. }
- W4310664078 endingPage "23063" @default.
- W4310664078 startingPage "23051" @default.
- W4310664078 abstract "Rain and snowfall will increase noise, change the resolution of objects in the point cloud and present great challenges to the accurate recognition of traffic objects. Accordingly, this article proposes an efficient real-time method for roadside 3-D light detection and ranging (LIDAR) background point cloud extraction and object segmentation under snowy weather. We first use a historical point cloud sequence to quickly construct a background model, extract the background point cloud from the current frame by using a background difference method and update the background model in real-time. Then, the noise caused by snowfall in the non-background point cloud is filtered based on the beam density difference of the object point clouds. Finally, the remaining object point cloud is accurately segmented based on the proposed hierarchical object clustering method. We use an intelligent roadside system equipped with 3-D roadside LIDAR to collect point cloud data in a snowfall environment and evaluate the proposed method qualitatively and quantitatively. Experimental results show that the proposed method effectively avoids the problem of under-segmentation and over-segmentation of object point clouds under snowy conditions, and the precision and recall rate of traffic object segmentation reached 96.41% and 95.02%, respectively, thereby indicating a significant improvement in the accuracy and reliability of traffic object detection using roadside LIDAR under snowy conditions." @default.
- W4310664078 created "2022-12-15" @default.
- W4310664078 creator A5013516968 @default.
- W4310664078 creator A5039945716 @default.
- W4310664078 creator A5049658962 @default.
- W4310664078 creator A5054273684 @default.
- W4310664078 creator A5081266790 @default.
- W4310664078 date "2022-12-01" @default.
- W4310664078 modified "2023-09-30" @default.
- W4310664078 title "Objects Detection With 3-D Roadside LIDAR Under Snowy Weather" @default.
- W4310664078 cites W2132360065 @default.
- W4310664078 cites W2136893407 @default.
- W4310664078 cites W2152845613 @default.
- W4310664078 cites W2152864241 @default.
- W4310664078 cites W2341949230 @default.
- W4310664078 cites W2414551140 @default.
- W4310664078 cites W2528122233 @default.
- W4310664078 cites W2565029242 @default.
- W4310664078 cites W2792919579 @default.
- W4310664078 cites W2794631752 @default.
- W4310664078 cites W2805899829 @default.
- W4310664078 cites W2905253977 @default.
- W4310664078 cites W2909746114 @default.
- W4310664078 cites W2921469264 @default.
- W4310664078 cites W2947240406 @default.
- W4310664078 cites W2970673508 @default.
- W4310664078 cites W2995758282 @default.
- W4310664078 cites W2996759437 @default.
- W4310664078 cites W2998570973 @default.
- W4310664078 cites W3008128075 @default.
- W4310664078 cites W3008960059 @default.
- W4310664078 cites W3029229651 @default.
- W4310664078 cites W3082942970 @default.
- W4310664078 cites W3101778766 @default.
- W4310664078 cites W3109442819 @default.
- W4310664078 cites W3193192644 @default.
- W4310664078 cites W3203339885 @default.
- W4310664078 cites W3211283304 @default.
- W4310664078 cites W3212274858 @default.
- W4310664078 cites W3213318810 @default.
- W4310664078 cites W4214852082 @default.
- W4310664078 doi "https://doi.org/10.1109/jsen.2022.3215768" @default.
- W4310664078 hasPublicationYear "2022" @default.
- W4310664078 type Work @default.
- W4310664078 citedByCount "1" @default.
- W4310664078 countsByYear W43106640782023 @default.
- W4310664078 crossrefType "journal-article" @default.
- W4310664078 hasAuthorship W4310664078A5013516968 @default.
- W4310664078 hasAuthorship W4310664078A5039945716 @default.
- W4310664078 hasAuthorship W4310664078A5049658962 @default.
- W4310664078 hasAuthorship W4310664078A5054273684 @default.
- W4310664078 hasAuthorship W4310664078A5081266790 @default.
- W4310664078 hasConcept C115051666 @default.
- W4310664078 hasConcept C115961682 @default.
- W4310664078 hasConcept C126042441 @default.
- W4310664078 hasConcept C131979681 @default.
- W4310664078 hasConcept C153294291 @default.
- W4310664078 hasConcept C154945302 @default.
- W4310664078 hasConcept C197046000 @default.
- W4310664078 hasConcept C205649164 @default.
- W4310664078 hasConcept C2776151529 @default.
- W4310664078 hasConcept C31972630 @default.
- W4310664078 hasConcept C41008148 @default.
- W4310664078 hasConcept C51399673 @default.
- W4310664078 hasConcept C62649853 @default.
- W4310664078 hasConcept C76155785 @default.
- W4310664078 hasConcept C89600930 @default.
- W4310664078 hasConcept C99498987 @default.
- W4310664078 hasConceptScore W4310664078C115051666 @default.
- W4310664078 hasConceptScore W4310664078C115961682 @default.
- W4310664078 hasConceptScore W4310664078C126042441 @default.
- W4310664078 hasConceptScore W4310664078C131979681 @default.
- W4310664078 hasConceptScore W4310664078C153294291 @default.
- W4310664078 hasConceptScore W4310664078C154945302 @default.
- W4310664078 hasConceptScore W4310664078C197046000 @default.
- W4310664078 hasConceptScore W4310664078C205649164 @default.
- W4310664078 hasConceptScore W4310664078C2776151529 @default.
- W4310664078 hasConceptScore W4310664078C31972630 @default.
- W4310664078 hasConceptScore W4310664078C41008148 @default.
- W4310664078 hasConceptScore W4310664078C51399673 @default.
- W4310664078 hasConceptScore W4310664078C62649853 @default.
- W4310664078 hasConceptScore W4310664078C76155785 @default.
- W4310664078 hasConceptScore W4310664078C89600930 @default.
- W4310664078 hasConceptScore W4310664078C99498987 @default.
- W4310664078 hasFunder F4320335777 @default.
- W4310664078 hasFunder F4320335787 @default.
- W4310664078 hasIssue "23" @default.
- W4310664078 hasLocation W43106640781 @default.
- W4310664078 hasOpenAccess W4310664078 @default.
- W4310664078 hasPrimaryLocation W43106640781 @default.
- W4310664078 hasRelatedWork W2004370856 @default.
- W4310664078 hasRelatedWork W2272572439 @default.
- W4310664078 hasRelatedWork W2391506322 @default.
- W4310664078 hasRelatedWork W2739874619 @default.
- W4310664078 hasRelatedWork W3080305507 @default.
- W4310664078 hasRelatedWork W3088831177 @default.
- W4310664078 hasRelatedWork W3183539416 @default.
- W4310664078 hasRelatedWork W4214729122 @default.